US20060108272A1 - Flow-through removal device and system using such device - Google Patents

Flow-through removal device and system using such device Download PDF

Info

Publication number
US20060108272A1
US20060108272A1 US11/267,391 US26739105A US2006108272A1 US 20060108272 A1 US20060108272 A1 US 20060108272A1 US 26739105 A US26739105 A US 26739105A US 2006108272 A1 US2006108272 A1 US 2006108272A1
Authority
US
United States
Prior art keywords
flow
inlet
tube
fluid
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/267,391
Inventor
Scott Ariagno
Mihir Sheth
Atif Yardimci
David Pennington
Michael Prisco
Edwin Chim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fenwal Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/267,391 priority Critical patent/US20060108272A1/en
Publication of US20060108272A1 publication Critical patent/US20060108272A1/en
Assigned to FENWAL, INC. reassignment FENWAL, INC. PATENT ASSIGNMENT Assignors: BAXTER INTERNATIONAL INC.
Assigned to MORGAN STANLEY & CO. INCORPORATED reassignment MORGAN STANLEY & CO. INCORPORATED FIRST-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: FENWAL HOLDINGS, INC., FENWAL, INC.
Assigned to MORGAN STANLEY & CO. INCORPORATED reassignment MORGAN STANLEY & CO. INCORPORATED SECOND-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: FENWAL HOLDINGS, INC., FENWAL, INC.
Assigned to FENWAL, INC., FENWAL HOLDINGS, INC. reassignment FENWAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY & CO. LLC
Assigned to FENWAL, INC., FENWAL HOLDINGS, INC. reassignment FENWAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY & CO. LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • A61M1/3633Blood component filters, e.g. leukocyte filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0209Multiple bag systems for separating or storing blood components
    • A61M1/0218Multiple bag systems for separating or storing blood components with filters
    • A61M1/0222Multiple bag systems for separating or storing blood components with filters and filter bypass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/05Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/30Filter housing constructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3687Chemical treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters

Definitions

  • the present invention is directed to a flow-through device for removing selected compounds and/or components from a fluid such as, but not limited to, a biological fluid.
  • the present invention is also directed to fluid processing systems using such flow-through devices.
  • the present invention is directed to a flow-through device for removing selected compounds from a liquid.
  • the device includes a housing having a first portion and a second portion that are joined together.
  • Each of the first and second portions include outer walls and inner walls, with a compound removing medium disposed between the walls of the portions.
  • One of the first or second portions includes an inlet port on the outer wall and the other of the first or second portions includes an outlet port on the outer wall.
  • the inner wall of the first or second portions includes a peripherally extending tongue while the inner wall of the other of the first or second portions includes a peripherally extending groove for receiving the tongue.
  • FIG. 6 is an enlarged, partial cross-sectional view of the flow-through removal device of FIG. 5 .
  • FIG. 13 is a plan view of still another embodiment of a flow-through system including a flow-through removal device.
  • FIG. 16 is a plan view of the reverse side of the flow-through removal system and device of FIG. 15 .
  • FIG. 17 is a perspective view of a holder for supporting a flow-through removal device embodying the present invention.
  • FIG. 18 is an exploded view of the holder of FIG. 17 .
  • FIG. 19 is a perspective view of a removal device within the holder of FIG. 18 .
  • FIG. 20 is a reverse perspective view of the holder and flow-through removal device of FIG. 19 .
  • FIG. 24 is an alternative arrangement of the holder and flow-through removal device of FIG. 22 , including a connector attached to a vertical support pole.
  • FIG. 30 is a perspective view of one portion of the removal device housing with sealant reservoirs and injection apertures.
  • FIG. 33 is a partial, cross-sectional view of the tongue and groove engagement prior to welding.
  • FIG. 36 is a perspective view, shown in cross-section, of a part of the outlet housing portion with an alternative rib arrangement.
  • FIG. 40 is a perspective view of an alternative embodiment of the removal media with an annular gasket around the perimeter of the media disk.
  • FIG. 45 is a cross-sectional side view of a removal device including the removal media of FIG. 43 .
  • system 10 includes tube 18 which connects device 20 to receiving container 14 .
  • tube 18 connects device 20 to receiving container 14 .
  • one end of tube 18 is joined to inlet port 26 of container 14 , and the other end is joined to outlet port 32 of device 20 .
  • the removal media may be in the form of a disk made of, preferably, divinylbenzene styrene particulate that is finely ground and combined with a binding material, such as polyethylene or a blend thereof.
  • a binding material such as polyethylene or a blend thereof.
  • This combination is sintered, resulting in disk 60 shown in FIGS. 4-6 having side surfaces 60 a and 60 b and peripheral end surface 60 c .
  • Disks of this type are available from Porex Technologies of Fairburn, Ga. with particulate provided by the Purolite Company of London, United Kingdom.
  • Still other alternatives include depositing or printing a hot-melt adhesive onto the perimeter of the medium disk 60 , shrink-fitting a film around the perimeter of medium disk 60 or dipping the perimeter of the medium disk in a PVC plastisol.
  • Ribs 101 which may be more widely spaced (and, therefore, fewer in number) than ribs 100 provide a reference point for locating disk 60 on flat 89 . It will be understood that housing portion 46 may include either one set of ribs 100 or 101 , or may include both sets.
  • clips 160 (and 162 ) define a channel which receives tubing.
  • clips 160 and 162 also assist in guiding tubes 16 and 18 through a 180° turn without kinking. As described above, turning the tubing approximately 1800 allows entry of fluid at the “bottom” of device 20 and exit of fluid through the “top” of device 20 .

Abstract

Flow-through systems for processing biological fluid are disclosed. The flow-through systems include a removal device in the flow path for removing unwanted compounds and agents. The removal device includes a removal media contained within a housing made of two separate portions sealed together. The housing is maintained in a substantially vertical disposition, thereby ensuring substantially uniform and complete exposure of the fluid to the media.

Description

  • The present invention is directed to a flow-through device for removing selected compounds and/or components from a fluid such as, but not limited to, a biological fluid. The present invention is also directed to fluid processing systems using such flow-through devices.
  • BACKGROUND OF THE INVENTION
  • Flow-through devices for removing compounds or other components from a biological fluid are known. For example, flow-through removal devices have been used in medical processing sets where the biological fluid is filtered to remove undesired blood components, such as leukocytes. Flow-through devices have also been proposed for use where the biological fluid has been treated with a solvent or chemical agent as, for example in a pathogen inactivation process.
  • In many pathogen inactivation processes, a chemical agent is typically added to the biological fluid to either (1) directly inactivate present pathogens or (2) inactivate present pathogens in combination with other means, such as light. Regardless of the method used, after treatment, it is desirable to remove unreacted chemical agents or by-products of the inactivation process from the biological fluid prior to its transfusion to the patient.
  • One example of such a pathogen inactivation processing system is described in U.S. patent application Ser. No. 09/325,599, which is incorporated herein by reference in its entirety. In the system described therein, fluid from a source container that has been treated in a pathogen inactivation process (e.g., photoactivation with ultraviolet light and a psoralen compound) is passed through a removal device and collected in a receiving container. The removal device includes a sorbent selected to remove residual chemical agent and/or by-products of the inactivation process.
  • Flow-through devices may also be used in the filtration of blood products to remove, for example, leukocytes from a collected blood product. An example of a fluid processing system that includes a leukoreduction filter in a flow-through arrangement is described in U.S. Pat. No. 6,358,420. Flow-through devices may also be used to remove treating agents used in the treatment of blood or a blood fraction, which agent is desirably removed from the fluid prior to further use of the fluid.
  • In the above-described examples, the removal device includes a housing and a removal media inside the housing. Regardless of the removal for which the device is used (i.e., leukoreduction, or removal of inactivation compounds or other agents), complete and uniform exposure of the fluid to the removal medium is important. To obtain the greatest efficiency for the removal medium, it is desirous for the fluid to come in contact with as much of the removal medium as possible. For example, to ensure substantially complete removal of the inactivating agent in the pathogen inactivation example described above, it is desirable that the fluid contact the removal media as completely as possible, without bypassing any part of the removal media. Likewise in a leukoreduction device, complete exposure is important to ensure substantially complete removal of leukocytes, which if otherwise transfused, may cause an adverse reaction in the recipient.
  • To further ensure substantially complete and uniform exposure of the fluid to the media, it is important that the removal media be maintained in a substantially fixed orientation. For example, in a processing set that includes a hanging-type filter where the flow is “top to bottom,” very often, a natural twisting moment causes the filter to hang at an angle. As the weight below the filter changes (i.e., as the collection container fills), the moment increases and the angle changes. A device that tilts away from the central vertical axis may result in uneven distribution of the fluid across the removal media, resulting in incomplete exposure and removal of the undesired agents.
  • In addition to uniform and complete exposure of the fluid to the media, it is also important, to have substantial processing time consistency (i.e., reproducibility) from one device to the next.
  • It is also desirable that a device that meets the above performance requirements is also easy and economical to manufacture with a low rejection rate.
  • The above objectives are addressed by the present invention.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present invention is directed to a flow-through device for removing selected compounds from a liquid. The device includes a housing having a first portion and a second portion that are joined together. Each of the first and second portions include outer walls and inner walls, with a compound removing medium disposed between the walls of the portions. One of the first or second portions includes an inlet port on the outer wall and the other of the first or second portions includes an outlet port on the outer wall. The inner wall of the first or second portions includes a peripherally extending tongue while the inner wall of the other of the first or second portions includes a peripherally extending groove for receiving the tongue.
  • In another aspect, the present invention is directed to a flow-through device for removing selected compounds from a liquid that includes a housing. The housing includes first and second outer walls defining an interior chamber between the walls. A compound removing medium is disposed within the interior chamber. In a preferred embodiment, the housing includes an inlet port on one of the outer walls and an outlet port on the other of the outer walls, wherein the location of the outlet port is diametrically opposed to the location of the inlet port.
  • In another aspect, the present invention is directed to a flow-through system for removing selected compounds or components from a fluid. The system includes a source container, including a fluid outlet and a receiving container including a fluid inlet. The system includes a compound removal device disposed between the source and receiving containers. The device includes a housing having first and second outer walls and a compound removing medium between the walls. The housing further includes a fluid inlet on one of the outer walls and located between the center of the device and the receiving container, and a fluid outlet on the other outer wall and located between the center of the device and the source container on the other outer wall. The system further includes a first tube providing a flow path between the source container and the device inlet and a second tube providing a flow path between the device outlet and the receiving container inlet.
  • In another aspect, the present invention is directed to a flow-through device for removing selected compounds from a liquid. The device is comprised of a housing having a pair of side walls and a peripheral wall defining a chamber. A removal medium is located within the chamber, the medium having an end wall terminating interior to the peripheral wall of the housing. A liquid impermeable barrier is located in the area of the chamber substantially between the medium peripheral end surface and the peripheral end wall of the housing.
  • In another aspect, the present invention is directed to a flow-through processing system for removing selected compounds or components from a fluid. The flow-through system includes a source container including a fluid outlet and a receiving container including a fluid inlet. A compound removal device is located between the source container and the receiving container. The housing includes a first and second outer walls and a compound removing medium between the walls. The housing includes a fluid inlet on the first outer wall, the inlet being located between the center of the first housing wall and the receiving container and a fluid outlet on the second outer wall located between the second housing wall center and the source container. The system also includes a tubing providing a flow path between the source container outlet and housing inlet and tubing providing a flow path between the receiving container inlet and housing outlet. The length of the flow path between the source container and the inlet is greater than the length of the flow path between the device outlet and the receiving container.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a fluid processing system including a flow-through removal device embodying the present invention.
  • FIG. 2 is a partial plan view of the fluid processing system of FIG. 1 showing the reverse side of the flow-through device.
  • FIG. 1A is a plan view of an alternative fluid processing system with a flow-through removal device embodying the present invention.
  • FIG. 2A is a partial plan view of the fluid processing system of FIG. 1A showing the reverse side of the flow-through device.
  • FIG. 3 is a perspective view of the removal device embodying the present invention.
  • FIG. 4 is an exploded view of the flow-through removal device embodying the present invention.
  • FIG. 5 is a cross-sectional side view of the flow-through removal device of FIG. 1.
  • FIG. 6 is an enlarged, partial cross-sectional view of the flow-through removal device of FIG. 5.
  • FIG. 7 is a partial perspective view of the retaining clip on the housing of the flow-through removal device embodying the present invention.
  • FIG. 8 is a partial perspective view of a retaining loop on the housing of the flow-through removal device embodying the present invention.
  • FIG. 9 is a perspective view of one portion of the flow-through removal device embodying the present invention including a version of the inlet port.
  • FIG. 10 is a side view of one embodiment of a flow-through removal device.
  • FIG. 11 is a partial plan view of one embodiment of a fluid processing system including a flow-through removal device.
  • FIG. 12 is a partial side view of another embodiment of the fluid processing system.
  • FIG. 13 is a plan view of still another embodiment of a flow-through system including a flow-through removal device.
  • FIG. 14 is a side cross-sectional view of the system shown in FIG. 13.
  • FIG. 15 is a partial plan view of still another embodiment of a flow-through system including a flow-through removal device.
  • FIG. 16 is a plan view of the reverse side of the flow-through removal system and device of FIG. 15.
  • FIG. 17 is a perspective view of a holder for supporting a flow-through removal device embodying the present invention.
  • FIG. 18 is an exploded view of the holder of FIG. 17.
  • FIG. 19 is a perspective view of a removal device within the holder of FIG. 18.
  • FIG. 20 is a reverse perspective view of the holder and flow-through removal device of FIG. 19.
  • FIG. 21 is a cross-sectional view of the tubing channel of the holder of FIG. 19.
  • FIG. 22 is a perspective view of an alternative embodiment of the holder for supporting the flow-through removal device.
  • FIG. 23 is the perspective view showing the reverse side of the holder and flow-through removal device of FIG. 22.
  • FIG. 24 is an alternative arrangement of the holder and flow-through removal device of FIG. 22, including a connector attached to a vertical support pole.
  • FIG. 25 is an exploded perspective view of a further alternative embodiment of the flow-through removal device embodying the present invention.
  • FIG. 26 is a cross-sectional side view of the flow-through removal device of FIG. 25.
  • FIG. 27 is a cross-sectional side view of a removal device with removal medium disposed therein.
  • FIG. 28 is a cross-sectional side view of a compound removal device with a sealant being injected into the housing interior.
  • FIG. 29 is a cross-sectional side view of a removal device with a sealant filled gap.
  • FIG. 30 is a perspective view of one portion of the removal device housing with sealant reservoirs and injection apertures.
  • FIG. 31 is a perspective view of the reverse side of housing portion of FIG. 30.
  • FIG. 32 is a perspective view of one embodiment of an assembled removal device.
  • FIG. 33 is a partial, cross-sectional view of the tongue and groove engagement prior to welding.
  • FIG. 34 is a partial, cross-sectional view of the tongue and groove welded together.
  • FIG. 35 is a perspective view, shown in cross-section, of a part of the outlet housing portion.
  • FIG. 36 is a perspective view, shown in cross-section, of a part of the outlet housing portion with an alternative rib arrangement.
  • FIG. 37 is a perspective view of an alternative embodiment of the removal media with a ring of binder material around the perimeter of the media disk.
  • FIG. 38 is a perspective view of the disk of FIG. 37 with a portion cut away to show a cross-sectional view of the disk and ring.
  • FIG. 39 is a cross-sectional side view of a removal device including the removal disk of FIG. 37.
  • FIG. 40 is a perspective view of an alternative embodiment of the removal media with an annular gasket around the perimeter of the media disk.
  • FIG. 41 is a perspective view of the disk of FIG. 40 with a portion of the removal media cut away to show the gasket.
  • FIG. 42 is a cross-sectional side view of a removal device including the removal media of FIG. 40.
  • FIG. 43 is a perspective view of the removal media disk with an impermeable skin around the outer perimeter of the media disk.
  • FIG. 44 is a perspective view of the removal media disk of FIG. 43 with a portion cut-away to show a cross-sectional view of the media disk.
  • FIG. 45 is a cross-sectional side view of a removal device including the removal media of FIG. 43.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Turning now to the drawings, FIG. 1 shows a flow-through fluid processing system embodying the present invention. The system may be used in any application where fluid is passed from a fluid source to a receiving container, and contact between the fluid and a treating, removing or filtering medium is desired.
  • In FIG. 1, there is shown a source container 12 for holding fluid. In one specific, yet non-limiting application, source container 12 may hold a biological fluid, such as blood or a component of blood. The system shown in FIG. 1 also includes a receiving container 14. A removal device 20 embodying the present invention is also shown and is typically located between and in flow communication with the source container 12 and receiving container 14.
  • Optionally, the system 10 may include additional containers. For example, in the embodiment shown in FIG. 1, system 10 includes an additional container 22 which may include an agent, useful in the treatment of the biological fluid. Specifically, in a non-limiting example, container 22 may include an agent useful in the pathogen inactivation of the biological fluid.
  • One example of a pathogen inactivation compound is a psoralen compound, such as, but not limited to, 5′-(4-amino-2-oxa) butyl-4,5′,8-trimethyl psoralen as the pathogen inactivation compound. Examples of suitable psoralen compounds and methods of inactivating pathogens in biological fluid using psoralens are provided in U.S. Pat. Nos. 5,578,736 and 5,593,823, both of which are incorporated herein by reference.
  • Other examples of pathogen inactivating compounds include phthalocyanine derivatives, phenothiazine derivatives (including methylene blue or dimethyl-methylene blue); endogenous and exogenous photosensitizers such as alloxazines, isoalloxazines (including riboflavin), vitamin Ks, vitamin L, napththoquinones, naphthalenes, naphthols, pathogen inactivating compounds disclosed in U.S. Pat. Nos. 6,258,577, 6,268,120, and 6,277,337, which are incorporated herein by reference, or “Pen 110,” which is made by V.I. Technologies, Inc. (which is also known as the Inactine™ compound).
  • Examples of pathogen inactivation compounds that may be useful in red blood cell pathogen inactivation methods include the pathogen inactivation agents disclosed above and those disclosed in U.S. Pat. No. 6,093,725 and U.S. application Ser. No. 09/539,226 filed Mar. 30, 2000, which is directed to the use of compounds having nucleic acid affinity and containing a mustard group, or mustard group equivalent or mustard group intermediate. U.S. Pat. No. 6,093,775 and U.S. application Ser. No. 09/539,226 are incorporated herein by reference. A preferred compound for red blood cell pathogen inactivation is p-alanine, N-(acridin-9-yl), 2-[bis(2-chloroethyl)amino]ethyl ester.
  • Returning to FIG. 1, container 22 is connected (and is in flow communication with) source container 12 via tube 28. Details of this illustrative system and of the pathogen inactivation process with which it is used are set forth in U.S. patent application Ser. No. 09/325,599, filed Jun. 3, 1999 and previously incorporated by reference.
  • As further shown in FIGS. 1 and 2, source container is connected to removal device 20 by a first tube 16. Tube 16 provides a flow path from source container 12 to removal device 20. One end of tube 16 is joined to outlet port 24 of container 12, and the other end to the inlet port 30 of device 20.
  • As shown in FIGS. 1 and 2, system 10 includes tube 18 which connects device 20 to receiving container 14. Specifically, one end of tube 18 is joined to inlet port 26 of container 14, and the other end is joined to outlet port 32 of device 20.
  • An alternative flow-through system 10 is shown in FIGS. 1A and 2A. The same reference numerals are used to identify the same features as those shown in FIGS. 1 and 2. In the embodiment shown in FIGS. 1A and 2A, it will be appreciated that the opening in inlet port 30 faces away from the center 36 (i.e., toward the periphery of the housing) of device 20. Similarly, the opening in outlet 32 faces away from the center 36 (and toward the housing periphery) of device 20. While the orientation of inlet port 30 and outlet port 32 as shown in FIGS. 1 and 2 is preferable, the embodiment shown in FIGS. 1A and 2A is equally suitable.
  • Regardless of the orientation of ports 30 and 32, a common aspect of both of the embodiments shown in FIGS. 1 and 1A is the location of inlet and outlet ports of device 20 relative to the device center 36 and containers 12 and 14. In each of the embodiments, inlet port 30 is located between the center 36 of device 20 and receiving container 14. The outlet 32 is located between the center 36 and source container 12. This results in a flow through device 20 that is directionally reversed relative to the flow through the remainder of the system 10. Thus, fluid enters inlet port 30 and is forced to flow “up” to outlet 32. It has been discovered that this reversed flow, at least in part, reduces the time required for a fluid to pass through device 20, provides more reproducible flow from device to device, and provides more complete exposure of the fluid to the removal media inside device 20.
  • Turning now to FIGS. 3, 4, and 5, there is shown a removal device 20 embodying the present invention. In a preferred embodiment, device 20 is comprised of a housing 42 made of two separate portions 44 and 46 that are joined together. Each portion 44 and 46 includes an outer surface, identified by 50 and 52 (see FIG. 5) and/or inner surfaces, identified by 54 and 56, respectively. As shown in FIG. 4-6 and FIGS. 35-36, portion 46 provides a base for receiving removal media 60 and optional filters 62 and 64 (described below). Thus, housing portion 46 has some depth to it, with multiple concentric flats 82, 84 and 89 (also described below) at different depth levels on which removal media 60 and optional filters nest. As shown in FIG. 6, portion 46 is comprised of a generally planar side wall and peripheral end wall 57. Housing portion 42 may be more in the form and shape of a flat cover member with no significant depth. As shown in FIG. 4, portion 44 includes inlet port 30 and portion 46 includes outlet port 32. As shown in FIG. 30, portions 44 and 46 may optionally include alignment tabs 48 to ensure proper mating of portions 44 and 46 during assembly.
  • Housing 42 is preferably made of a hard plastic that can be injection molded. The material used for housing 42 should be suitable for sterilization by known forms of sterilization such as gamma or electron beam radiation. The material should also be amenable to preferred sealing operations such as, but not limited to, ultrasonic welding. Examples of suitable materials include polymethylmethacrylate (PMMA) and acrylonitrile butadiene styrene (ABS). As shown in FIGS. 3-5, one of the housing portions 44 or 46 may include a retaining member 58 for receiving tubing 16 and/or 18 (discussed in more detail below).
  • As shown in FIG. 4, device 20 preferably includes one or more treating or removal media (e.g., disk 60) placed between inner surface 54 and 56 of device 20. As fluid enters device 20 through inlet port 30, it comes into contact with media 60. The fluid permeates the media and travels across the surface 60 a thereof before exiting through outlet 32. In one non-limiting example, removal media 60 may be selected for removing unwanted components from a fluid. In a pathogen inactivation fluid processing system of the type described in U.S. patent application Ser. No. 09/325,599, the medium may be a sorbent media for removing unreacted pathogen inactivation compound, by-products of the pathogen inactivation treatment and other compounds and substances, including other pathogenic compounds.
  • As described in U.S. patent application Ser. No. 09/325,599, the removal media may be in the form of a disk made of, preferably, divinylbenzene styrene particulate that is finely ground and combined with a binding material, such as polyethylene or a blend thereof. This combination is sintered, resulting in disk 60 shown in FIGS. 4-6 having side surfaces 60 a and 60 b and peripheral end surface 60 c. Disks of this type are available from Porex Technologies of Fairburn, Ga. with particulate provided by the Purolite Company of London, United Kingdom.
  • Of course, the removal media 60 described is not limited to the materials identified above. The medium can be made of any material, sorbent or otherwise, that can remove selected compounds or agents from the fluid. Examples of materials useful in the removal of compounds and agents are provided in U.S. Pat. No. 6,544,727 and U.S. Patent Application Publication Nos. US 2001/0018179 A1 and US 2001/0009756 A1, all of which are herein incorporated by reference. The medium can also be a filtration medium used to capture (other than by sorption) unwanted compounds or components. For example, the medium 60 may be used to capture leukocytes and remove them from the biological fluid.
  • As shown in FIG. 4, device 20 may include additional inserts for filtration and removal of compounds or components. For example, in an embodiment where device 20 is used in a pathogen inactivation treatment to remove residual agents and by-products of the inactivation process, it may be preferable to include one or more additional filtration media 62 and 64. Filters 62 and/or 64 may be included to capture any loose particulate from removal media 60. Filters 62 and 64 may be of conventional type as, for example, nylon mesh or, more preferably, polyester mesh with a pore size of between 0.2 and 0.8 microns. Although two filter elements 62 and 64 are shown, one filter element may be sufficient.
  • As shown and previously described, housing 42 of device 20 is preferably made of two portions 44 and 46 joined together with removal medium 60 (and one or more filter media 62 and 64) enclosed within housing 42. In a preferred embodiment, portions 44 and 46 are joined to each other at or near their outer peripheries. Proper alignment of housing portions 44 and 46 may be ensured by aligning alignment tab 57 with retaining member 58. (Alternative and optional alignment tabs 48 are also shown in FIG. 32). Portions 44 and 46 may be joined together by sealing together inner surfaces 54 and 56 (of portions 44 and 46).
  • Preferably, portions 44 and 46 may be attached together by a mating tongue and groove arrangement. FIGS. 6 and 30-33 show the preferred mating arrangement. Inner surface 56 of portion 46 provides a groove 68 near the periphery of inner surface 56. Groove 68 is continuous along the entire periphery of housing portion 46. With reference to FIG. 6, groove 68 is sized to receive outwardly extending tongue 70 on inner surface 54 of housing portion 44. Like groove 68, tongue 70 is continuous along the entire outer periphery of portion 44.
  • During assembly of device 20, tongue 70 is inserted into groove 68. The area of the tongue and groove fitment is then preferably exposed to a sealing means. In a preferred embodiment, the sealing procedure may include an ultrasonic device for sonic welding and fusing of tongue 70 and groove 68. Other forms of welding or sealing, known to those of skill may also be used. The energy from the sonic weld melts the plastic parts of groove and tongue 68 and 70 and fuses them together, as shown in FIG. 32, thereby forming a permanent seal of portions 44 and 46.
  • As shown in FIGS. 10 and 31, inner groove wall 72 includes an outwardly extending shoulder 74. During assembly of device 20, tongue 70 first comes into contact with shoulder 74 of groove 68. During welding these areas of tongue and groove 68 are first to physically fuse together to provide the seal. As further shown in FIGS. 6 and 34, the tongue 70, once inserted into groove 68 leaves outer and lower gaps 78 and 80. These gaps are provided to receive melt, from the sonic welding process and reduce stress on the housing 42 which otherwise could lead to cracks in the housing.
  • As best seen in FIGS. 35-36, inner surface 56 of portion 46 may further include nesting shoulders or flats 82 and 84 on which filter media 62 and 64 are placed. Peripheral portions of filters 62 and 64 rest on flats 82 and 84 which may be continuous along the entire periphery of housing portion 46. Filters 62 and 64 may be adhered to inner surface 46 by known adhesion techniques. However, preferably, filters 62 and 64 are sonic welded to flats 82 and 84 along the peripheries thereof. Flats 82 and 84 may further include energy directors 83. Energy directors 83 may be raised, triangular surfaces, as shown in FIG. 33, and as will be recognized by those of skill in the art. Energy directors 83 assist in providing a firm weld between filter 62 and/or 64 and housing 46.
  • As further seen in FIG. 6 (and 35 and 36), one or both housing portions 44 and 46 may include a continuous gripping member(s), or seal ring(s) 86 (and 88). As shown in the Figures, rings 86 and 88 may be raised surfaces that extend from inner surfaces 54 and 56 near the peripheries of portions 44 and 46. In a preferred embodiment, seal rings 86 and 88 are located between center 36 of device 20 and the tongue and groove assembly 70 and 68 described above. As shown in FIG. 6, seal rings 86 and 88 partially compress removal medium 60 and substantially prevent liquid from traversing and bypassing medium 60. Preferably, rings 86 and 88 may terminate in a pointed end to better grip removal medium 60.
  • For additional assurance that liquid is not bypassing medium 60, the gap 90 remaining between medium 60 and housing 42 may be substantially filled with a liquid impermeable barrier. Shown in FIGS. 27 and 28 is one method of sealing or substantially filling gap 90 and preventing any unintentional liquid bypass. Turning briefly back to FIG. 6, gap 90 surrounds removal media (disk) 60 in the area between rings 86 and 88 and the inner surfaces 54 and 56 of the side walls and peripheral end wall 57 of housing 42. As shown in FIGS. 27 and 28, a sealant 92 may be injected into gap 90. Injection ports 94 may be provided in housing portions 44 and/or 46. Sealant 92 may be injected by syringe 95 or any other means. As shown in FIGS. 30 and 31, housing portion 46 may also include one or more reservoir(s) 91 for receiving a quantity of sealant. Reservoir(s) 91 provide(s) a space for a sufficient quantity of sealant to effectively seal gap 90.
  • Suitable sealants may include epoxies, RTVs, hot melts, polyurethane, EVA-based hot melts, silicones or other plastics, such as acrylic polymers. A preferred sealant is an EVA/wax hot melt available from Bostik Findley of Wauwatosa, Wisc. under the name Bostik H1714. The sealant may also be a gel that remains semi-solid after being injected. In any event, introducing sealant into gap 90, as shown in FIG. 29, effectively prevents liquid from bypassing removal medium 60.
  • Preventing liquid bypass of removal media 60 can also be accomplished by providing the disk of removal media 60 with a preformed sealing ring 93 or gasket around the perimeter of medium 60, as shown in FIGS. 37 and 38. In one such alternative embodiment, ring 93 may be made of a suitable binding material that can be applied to the outer perimeter of removal medium disk 60. Ring 93 can be molded onto disk 60 during or after manufacture of the disk. For example, in one embodiment, ring 93 may be molded during the sintering of removal medium disk 60.
  • Ring 93 should have a thickness substantially equal to the gap 90 formed by housing portions 44 and 46 when the portions are brought together to form housing 42, as shown in FIG. 39. Any binder that is substantially liquid impermeable and biocompatible and can be molded onto or with the disk is suitable. In one example, the ring 93 may be made of a binding material made of a polymeric material, such as, but not limited to, polyethylene. A preferred polyethylene is ultra high molecular weight polyethylene (UHMWPE). The UHMWPE may be blended with other compounds, however, a 100% UHMWPE is preferred.
  • In a variant of the above-described embodiment, ring 93, or a suitable sealant or binding material may be formed first and placed in a sintering mold cavity. The removal media can then be sinter-formed inside the molded disk, resulting in a structure substantially similar to that shown in FIGS. 37 and 38. The outer ring 93 can be molded sonically, or otherwise, to housing 42. Where housing 42 is made of an acrylic-based material, a suitable material for ring 93 is acrylic, which can then be welded to housing 42.
  • In another alternative shown in FIGS. 40-42, a thin gasket 198 made of a liquid impermeable and biocompatible material can be placed inside a mold cavity. The removal medium disk 60 can be sinter formed on top of the gasket. The gasket may be sealed to housing 42 by solvent bonding, ultrasonic welding or other known sealing techniques. Gasket 198 may be attached to the surface of disk 60 adjacent to the outlet port 32 of housing 42, as shown in FIG. 42. Preferably gasket 198 extends substantially to the outer end wall of the annular gap 90 in housing 42, thereby preventing any liquid that may not have contacted removal disk 60, from exiting through the outlet port 32. A suitable gasket material can be any polymeric material or blend of polymeric material that is also biocompatible. An example of one such material is an ethylene vinyl acetate composition.
  • Still other alternatives include depositing or printing a hot-melt adhesive onto the perimeter of the medium disk 60, shrink-fitting a film around the perimeter of medium disk 60 or dipping the perimeter of the medium disk in a PVC plastisol.
  • In yet another alternative that does not require applying a sealant around to the disk 60 perimeter, the end surface 60c of the removal medium disk 60 may be treated to provide a liquid impermeable peripheral edge. In one embodiment, disk 60 perimeter may be exposed to a high temperature, such as, approximately 120° C. to create an impermeable skin around the perimeter. A skin can be formed by rotating the disk and exposing the peripheral edge of disk 60 to a hot air source or placing the disk in a hot-mold press to further form it after sintering. As shown in FIG. 43, skin 200 is formed around the outer perimeter and peripheral edge of medium disk 60 with some of skin 200 overlapping the sorbent material on the outer surface of disk 60. Preferably, skin 200 extends over outer surface of disk 60 such that seal rings 86 and 88, previously described, contact the skin-covered portion of disk 60, as shown in FIG. 45.
  • Turning briefly back to FIG. 1A, one or preferably both of housing portions 44 and 46 may include a plurality of ribs 96, 98. Ribs 96, 98 may be raised surfaces that extend from inner surfaces 54 and 56, respectively. In a preferred arrangement, portion 46, which includes outlet port 32, includes two or more ribs 96 placed at or near port 32 as shown in FIG. 31. Ribs 96 prevent filter 64 from blocking outlet port 32.
  • Housing portion 44 may also include a plurality of ribs 98. Ribs 98 may be raised surfaces that extend from inner surface 54 and provide strength and additional support for housing 44 during assembly. This may be particularly desirable when device 20 is joined by ultrasonic welding. Additionally, ribs 96 may prevent removal device 60 from adhering to the inner wall 54 of portion 44 (and possibly blocking inlet port 30). The plurality of ribs 98 may be spaced and arranged in any desirable configuration. For example, ribs 98 may be spaced from each other in parallel across the surface of inner wall 54. Other arrangements are also possible. In a preferred embodiment, ribs 98 are radially spaced extending from a point near the center 36 of device 20 (like spokes on a wheel), as shown in FIG. 1A.
  • As shown in FIG. 35, a plurality of ribs may also be provided in housing portion 46. As shown in the Figures, ribs 100 line the outer perimeter of portion 46 at the inner surface 56 adjacent to groove 68. More specifically ribs 100 support the peripheral upstanding wall segment 57 a that defines, in part, groove 68. Ribs 100 provide strength to the housing and prevent groove 68 from deflecting during, for example, ultrasonic welding. Alternatively, as shown in FIG. 36, a series of ribs 101 may also be provided along the peripheral wall 57, and more specifically wall segment 57 b. Ribs 101, which may be more widely spaced (and, therefore, fewer in number) than ribs 100 provide a reference point for locating disk 60 on flat 89. It will be understood that housing portion 46 may include either one set of ribs 100 or 101, or may include both sets.
  • With reference to FIGS. 3 and 7, device 20 may include one or more retaining members 58 on housing 42. As shown in the Figures, retaining members 58 may be integral with the housing portion 46. Retaining member 58 may be in the form of a two-pronged clip, as shown, for example, in FIG. 7. During assembly of the processing system 10, tubing 16 or 18 is press fit into the gap between the prongs of the clip, as shown in FIG. 10. Retaining member 58 is substantially aligned with port 30 and/or 32. Alternatively, retaining member 58 may be a closed loop through which the tube 16 or 18 is threaded. Retaining members hold tubing 16 and 18 adjacent to housing 42 and assist in maintaining housing 42 in a substantially vertical orientation. As mentioned above, maintaining the vertical orientation of housing 42 is important to ensuring uniform exposure of the fluid to the removal media of device 20.
  • FIGS. 11-16 and 26 show different fluid circuits and tubing configurations for directing flow through the flow-through fluid processing set 10 of the present invention. Typically the processing set is suspended from, for example, an IV pole to allow for gravity induced flow of fluid through the system. In FIG. 11, there is shown a portion of the flow-through fluid processing system 10. As shown therein, the flow-through fluid processing system 10 includes a housing 42. It will be understood that the compound removal device 20 of the embodiments shown in FIGS. 11-16 is located between source container 12 and receiving container 14 (as shown in FIGS. 1 and 1A). Thus, container 12 will be “above” the compound removal device 20 and receiving container 14 will be “below” the compound removal device.
  • As shown in FIG. 11, device 20 includes an inlet port 30 on one side of housing 42 and outlet port 32 on the opposite side of housing 42 (e.g., outer surfaces 50 and 52). As shown in the Figures, in the preferred arrangement, ports 30 and 32 are diametrically opposed such that inlet port 30 is in the lower end of one portion, whereas outlet port 32 is located in the upper end of the other portion. As discussed above, placement of inlet port 30 in a location where fluid must then flow “up” to the outlet is preferred and provides improved and consistent processing times, and ensures more complex exposure of the fluid to the media when compared to other inlet/outlet arrangements.
  • In one embodiment, such as the one shown in FIG. 1, where the opening of inlet port 30 faces the center 36 of device 20, tube 16 communicates directly with inlet port 30 in a straight path. As shown in FIG. 1A, where the opening to inlet port 30 faces away from source container 12 (and from the center 36 of the device 20) flow path must be re-oriented to allow entry of fluid into device 20. Thus, as shown in FIG. 11, where tube 16 is not attached to inlet port 30 through a straight path (as in FIG. 1), the direction of flow must be reversed.
  • For example, a flow through fluid processing system 10 where flow enters device 20 through an outlet that faces away from source container 12, may include a flow conduit to allow fluid entry. In this embodiment, the conduit diverts the flow in a direction that is approximately 180° turned from the direction of flow from container 12.
  • Thus, in the embodiment shown in FIG. 11, device 20 includes a fluid conduit 102 with a port 104 that receives fluid and a port 106 that introduces fluid into inlet port 30. As will be recognized by those of skill in the art, conduits 102 may be a standard “Y” type connector well known in the art. One branch of conduit 102 includes port 104, whereas the other branch includes port 106. A further port 108 is connected to tube or “dummy line” 110, discussed in greater detail below.
  • A similar arrangement is provided at outlet port 32. As shown in FIG. 11, a fluid conduit 112, such as, but not limited to a branched “Y” is provided. One branch 114 of conduit 112 communicates with outlet port 32. Branch 116 of conduit 112 communicates with tube 118, which ultimately communicates with tube 18 and the receiving container 14. A port 120 of conduit 112 is connected to tube or “dummy line” 122.
  • In accordance with the present invention, it may be desired or even necessary to occasionally vent air from receiving container 14. Typically, this is achieved by “burping” air from receiving container 14 through a line in system 10. In many of the embodiments, this flow path is provided as bypass tube 38. In FIGS. 1A, 2A and 11, a bypass tube 38 defines a flow path that provides a vent for air from system 10, and specifically container 14. Bypass tube 38 includes a one-way check valve 40. Line 38 with valve 40 allows air to be vented from receiving container 14.
  • Where bypass tube 38 is included, an additional branched flow conduit may also be provided as shown in FIG. 11. In one preferred embodiment, additional conduits may also be branched connectors 126 and 128. In a preferred embodiment, these branched conduits 126 and 128 are trifurcated conduits, such as, but not limited to, triple “Y” connectors of the type that will be known to those of skill in the art.
  • Thus, flow through the processing system 10 shown in FIG. 11 is as follows. Fluid flows from source container 12 through line 16. It enters branched conduit 126. In the preferred embodiment, branched conduit is a trifurcated conduit, as shown. One tube 129 extends from port 126A and is received by port 104 of conduit 102. At this point, it should be noted that tube 110, may be a “dummy line” which is sealed or flow therethrough otherwise restricted. Accordingly, flow through bifurcated conduit 102 is necessarily directed through port 106, through which it enters device 20. This branched conduit effectively reverses the direction of flow by 180°.
  • Once the fluid has passed through the device, where it contacts removing medium 60, it enters outlet 32. Flow exits the device 20 through port 32 and enters conduit 112 through port 114. As with fluid conduit 102, tube 122 is a “dummy line” that is sealed or flow therethrough is otherwise restricted. This prevents flow from entering the tube 122 and directs the flow through tube 118. Tube 118 communicates with conduit 128 and in particular port 128 a. Port 128 a communicates with tube 18 through which fluid is passed and collected in receiving container 14.
  • As shown in FIG. 11, a bypass tube 38 may also be provided. One end of bypass tube 38 communicates with port 128 c of the trifurcated conduit 128, while the other end of line 38 communicates with 126 c of the trifurcated conduit 126.
  • Alternative fluid circuits are shown in FIGS. 12-16. In FIG. 12, inlet port 30 and outlet port 32 are T-shaped ports which include openings facing both away from and toward center 36 of device 20. With this arrangement, the trifurcated conduit of FIG. 11 can be eliminated. Accordingly, as shown in FIG. 12, flow enters fluid conduit 112 and is directed to inlet port 30. The embodiment of FIG. 12 includes line 130 with a one-way check valve 40 a of the type previously described. Check valve 40 a, shown in FIG. 12, prevents flow from entering line 130 and outlet port 132, thereby ensuring that fluid travels through tube 129 toward inlet port 30. Fluid enters device 20 and exits through outlet port 32 where it is directed to tube 134. One end of tube 134 is attached to one branch of outlet 32, while the other end of tube 134 is attached to branched conduit 102.
  • A further alternative embodiment is shown in FIG. 13. This embodiment is similar in many respects to the embodiment of FIG. 12, in that it includes T-shaped ports 30 and 32. The embodiment of FIG. 13 likewise includes bifurcated conduits 112 and 102. Tubes 130 and 132 are equipped with check valves 40 a and 40 b. Flow enters device 20 at inlet port 30 and exits device 20 at outlet port 32.
  • A further alternative embodiment is shown in FIGS. 15-16. The embodiment of FIGS. 15 and 16 is similar in many respects to that shown in FIG. 11. In lieu of Y-type connectors, however, U-shaped conduits 136 and 138 may be provided for communicating with the inlet and outlet ports 30 and 32 of housing 42. The embodiment shown in FIGS. 15 and 16 may further include bifurcated conduits 140 and 142, which conduits are in flow communication with line 16 providing a flow path from source container 12 and line 18 leading to receiving container 14. As shown in FIG. 15, conduit 142 communicates fluid from tube 16 through tube 144. Tube 144 is connected to U-shaped flow conduit 136 attached to inlet port 30 of device 20. Fluid exits device 20 through outlet port 32, as previously described, and is diverted by U-shaped conduit 138 to tube 146. Tube 146, in turn, communicates with Y-type conduit 140 and ultimately with receiving container 14. A bypass line 38 may also be provided (for reasons previously described), including one-way check valve 40.
  • Turning now to FIGS. 25 and 26, there is shown another alternative embodiment of a removal device embodying the present invention. In this embodiment, inlet port 30 is located between center 36 and source container 12, and outlet 32 is located between center 36 and receiving container 14. Inlet port 30 and outlet 32 are in flow communication with internal channels 190 and 192, respectively.
  • The tubing configurations described above assist in maintaining housing 42 in a substantially vertical orientation. As described above, this allows for substantially uniform and complete exposure of the biological fluid to the removal media 60.
  • Finally, shown in FIGS. 17-24 are additional ways of organizing the fluid circuit of a fluid processing set 10 of the present invention, and substantially maintaining the vertical orientation of device 20. Shown in FIGS. 17-21 is an external holder used for holding device 20. As shown in FIG. 17, holder 150 may be made of two separable parts 152 and 154 that are clipped or otherwise joined together. Holder 150 may be made of a suitable plastic material and injection molded. Holder 150 may include stiffening ribs 151 to provide additional stiffness. As shown in FIGS. 17 and 18, holder 150 may include tube guiding clips 158, 160, 162 into which tubes from processing set 10 may be press-fit. As shown in FIG. 21, clips 160 (and 162) define a channel which receives tubing. In addition, clips 160 and 162 also assist in guiding tubes 16 and 18 through a 180° turn without kinking. As described above, turning the tubing approximately 1800 allows entry of fluid at the “bottom” of device 20 and exit of fluid through the “top” of device 20.
  • As shown in FIG. 18, both portions 154 and 152 of holder 150 may be identical. This allows one molding tool to be used for both parts of the holder 150.
  • Additional means for retaining device 20 are shown in FIGS. 22-24. In these embodiments, device 20 is nested in a saddle-type holder 170. Saddle 170 may also include tube guiding clips 172 for directing tubes of the processing set in the desired configuration and direction. Also, as shown in FIGS. 22-24, to further ensure the desired vertical disposition of the device 20, hooks 180 may be provided to hold two portions of the fluid circuit in close proximity to each other. Finally, as shown in FIG. 24, the entire saddle, or holder, 170 may be attached to a vertically standing IV pole 182.
  • Another important objective achieved by the present invention is the ability to ensure processing time consistency from one disposable set to the next. The challenge, of course, resides in the fact that there are inherent differences in the resistance to flow from removal medium disk to removal medium disk. Applicants have discovered that flow through the system can be substantially controlled and, thus, the influence of the resistance from disk 60, substantially diminished. In particular, and as discussed in more detail below, by adjusting the length of the flow path and the internal diameters of inlet tube 16 and outlet tube 18, it is possible to provide substantially consistent processing times from one set to the next.
  • For example, by lengthening the flow path of the system, namely the distance from source container 12 to collection container 14 (i.e., the “head height”), the force driving flow through the system may be increased. In addition, locating device 20 further from the source container 12 and closer to receiving container 14 (as generally depicted in FIG. 1) increases the force on the fluid flowing through inlet tube 16 and entering device 20 at inlet port 30 during priming.
  • Thus, for example, the length of tube 16 may be approximately 1.5 to 8 times as long as tube 18. In one specific, non-limiting example, the length of tube 16 may be approximately 26 inches and the length of tube 18, approximately 3½ inches.
  • It has also been discovered that additional control over the flow rate can be achieved by adjusting the diameter of the flow path(s). For example, by narrowing the internal diameter of inlet tube 16 (as compared to the diameter found in standard sized tubings used in blood processing and the medical field, generally), together with the lengthening of the overall “head height,” as discussed above, the resulting flow rate is sufficient to substantially reduce the effect of the inherent resistance of the removal medium or disk. Thus, flow can be better controlled and remain relatively insensitive to the resistance provided by the disk.
  • For example, inlet tubing, disk and outlet tubing form a hydraulic circuit that can be described as resistances in series (R1 for inlet tubing, R2 for disk and R3 for outlet tubing and Rr describing additional resistances from connectors (such as Y-sites, diameter changes and other connections). Thus, total resistance in the fluid circuit is the sum of these individual resistances. The driver for the flow is head-height as described above.
  • It is known that disk manufacturing will generate variability in R2 resistance. If, R2 is the dominant resistor in the circuit, the variations in its magnitude will cause significant variations in flow rate and ultimately processing time. Thus, the impact of disk manufacturing variability can be minimized by making another component in the circuit, specifically inlet tubing R1, the dominant resistor. Since tubing ID and length manufacturing tolerances are controllable to a higher degree compared to disk manufacturing, inherent variations in R1 are expected to be significantly smaller in magnitude compared to R2 variances. Inlet tube resistance is primarily defined by the internal diameter of the tube and secondarily by the length for the laminar flow regime of interest (Reynolds number 100-1000). Thus, the internal diameter (of tube 16) is the primary parameter to be changed.
  • Selection of the inlet tubing compared to outlet tubing as the primary restrictor is also driven by relative tube length considerations. The rationale of having longer tube length on the inlet side of the processing set as compared to outlet side has been discussed above. By selecting R1 as the dominant resistor, added benefit from tube length is gained as well.
  • Thus, whereas standard tubing used in blood processing typically has an internal diameter of approximately 0.118 inches, to provide the benefits described above, the internal diameter of tube 16 must be less than the standard and, more preferably, substantially less than the above-identified diameter. In one preferred, non-limiting example, the internal diameter of the inlet tube 16 may be anywhere between 0.025 and 0.09 inches. Even more preferably, the internal diameter of the tubing may be approximately 0.057±0.03 inches.
  • Further improvement in the processing time and flow consistency can also be achieved by altering the internal diameter of outlet tubes that are in flow communication with outlet 30. In one embodiment, the internal diameter of the outlet tube 18 (and/or tube 118 in FIG. 11, and/or tube segment 146 in FIG. 16) may be between approximately 0.04 inches and 0.120 inches. More preferably, the internal diameter of tube in flow communication with outlet may be approximately 0.080±0.03 inches. Narrowing the internal diameter of these outlet tubes (as compared to the internal diameter found in standard size tubing) assists in driving out air bubbles that may otherwise accumulate and restrict flow.
  • The present invention has been described in the context of its preferred embodiments. It will be understood, however, that the present invention is not limited to the embodiments described, and that further improvements and modifications may be made without departing from the scope of the present invention which is set forth in the appended claims.

Claims (31)

1-23. (canceled)
24. A flow-through fluid processing system for removing selected compounds from a fluid comprising:
a source container including a fluid outlet;
a receiving container including a fluid inlet;
a compound removal device disposed between said source and receiving containers, said device comprising a housing having an interior chamber and a compound removing medium within said chamber, said housing including a fluid inlet on one side of said housing and nearer to said receiving container than to said source container and a fluid outlet on said housing and nearer to said receiving container than to said source container;
a first tube providing a flow path between said source container outlet and said device inlet;
a second tube providing a flow path between said device outlet and said receiving container inlet.
25. System of claim 24 wherein said inlet includes an opening that faces away from said source container.
26. System of claim 24 wherein said device outlet includes an opening that faces away from said receiving container.
27. System of claim 24 further comprising a retaining member adapted to receive said first tube.
28. System of claim 25 further comprising a retaining member adapted to receive said second tube.
29. System of claim 25 wherein said retaining member comprises a loop integral with said housing and substantially vertically aligned with said device inlet.
30. System of claim 24 wherein the flow of liquid through said device is in a direction 180° inverted relative to the flow-through said first tube.
31. System of claim 25 wherein said flow path from said source container to said device inlet port, comprises an approximately 180° turn.
32. System of claim 30 wherein said device comprises a connector having at least two openings wherein one of said openings is in flow communication with said inlet port of said device and the other of said openings is in flow communication with said first tube.
33. System of claim 32 wherein said device comprises a connector having two openings wherein one of said openings is in flow communication with said outlet port of said device and the other of said openings is in flow communication with said second tube.
34. System of claim 32 wherein said connector comprises one end that includes a bifurcated conduit wherein one branch of said conduit includes one of said openings and said other branch includes the other of said openings.
35. System of claim 34 wherein said connector comprises a second end with a port and a tube between said port and said receiving container.
36. The system of claim 35 wherein flow through said tube between said connector second end and said receiving container is restricted.
37. System of claim 32 wherein said connector comprises a U-shaped fluid flow conduit.
38. System of claim 24 comprising an upstream connector having an inlet in direct flow communication with said source container, and a plurality of outlets;
a downstream connector including an outlet and a plurality of inlets,
wherein said first tube provides a flow path between one of said upstream connector outlets and said device inlet; and
said second tube provides a flow path between said device outlet and one of said downstream connector inlets.
39. System of claim 38 further comprising a tube defining a flow path, one end of which is connected to one of said upstream connector outlets and the other end connected to a downstream connector inlet, said tube including a valve in said flow path for selectively restricting flow therethrough.
40. System of claim 38 wherein said device inlet comprises a port facing away from said receiving container, said system further comprising a tube, one end of which is attached to said port facing said receiving container and other end of which is connected to one of said inlet ports of said downstream connector.
41. System of claim 39 wherein said tube comprises a permanently sealed flow path.
42. System of claim 38 comprising:
a tube defining a flow path between one of said upstream connector outlets and said device inlet;
a tube defining a flow path between one of said upstream connector outlets and one of said downstream connector inlets;
a tube between one of said upstream connector outlets and said device outlet connector.
43. System of claim 42 wherein said upstream connector comprises a fluid conduit comprising an inlet and a trifurcated outlet.
44. System of claim 24 comprising a holder for supporting said removal device.
45. System of claim 38 wherein said holder comprises a sleeve for receiving the housing of said device.
46. System of claim 44 wherein said holder comprises two separate parts joined together to provide said sleeve.
47. System of claim 44 wherein said holder is attached to a pole support.
48-59. (canceled)
60. A flow-through fluid processing system for removing selected compounds or components from a fluid comprising:
a source container including a fluid outlet;
a receiving container including a fluid inlet;
a compound removal device between said source container and receiving container, said device comprising a housing having first and second outer walls and a compound removing medium between said walls, said housing including a fluid inlet located between the center of said device and said receiving container and a fluid outlet located between said center and said source container;
tubing providing a flow path between said source container outlet and said housing inlet;
tubing providing a flow path between said housing outlet and said receiving container inlet;
wherein the length of said flow path between said source container and said inlet is greater than the length of said flow path between said device outlet and said receiving container.
61. The flow-through fluid processing system of claim 60 wherein at least a portion of said tubing between said source container and said device inlet has an internal diameter that is smaller than the internal diameter of said tubing between said device outlet and said receiving container.
62. The flow-through fluid processing system of claim 61 wherein said tubing providing said flow path between said device outlet and said receiving container has an internal diameter of 0.08±0.003 inches.
63. The flow-through fluid processing system of claim 60 comprising a first connector in said flow path between said source container and said device inlet and said tubing defining said flow path between said source container and said device inlet comprises:
a first tubing segment with a first end joined to said source container and said second end joined to said connector;
a second tubing segment with a first end joined to said connector and said second end joined to said device inlet;
said system further comprising a second connector in said flow path between said device outlet and said receiving container and a bypass tube having one end joined to said first connector and a second end joined to said second connector.
64. The flow-through fluid processing system of claim 63 wherein the internal diameter of said second tubing segment is smaller than the internal diameter of said bypass tube and said internal diameter of said first tubing segment is smaller than the internal diameter of said second tubing segment.
US11/267,391 2003-09-12 2005-11-04 Flow-through removal device and system using such device Abandoned US20060108272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/267,391 US20060108272A1 (en) 2003-09-12 2005-11-04 Flow-through removal device and system using such device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/661,994 US7534348B2 (en) 2003-09-12 2003-09-12 Flow-through removal device and system using such device
US11/267,391 US20060108272A1 (en) 2003-09-12 2005-11-04 Flow-through removal device and system using such device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/661,994 Division US7534348B2 (en) 2003-09-12 2003-09-12 Flow-through removal device and system using such device

Publications (1)

Publication Number Publication Date
US20060108272A1 true US20060108272A1 (en) 2006-05-25

Family

ID=34273996

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/661,994 Expired - Lifetime US7534348B2 (en) 2003-09-12 2003-09-12 Flow-through removal device and system using such device
US11/267,391 Abandoned US20060108272A1 (en) 2003-09-12 2005-11-04 Flow-through removal device and system using such device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/661,994 Expired - Lifetime US7534348B2 (en) 2003-09-12 2003-09-12 Flow-through removal device and system using such device

Country Status (14)

Country Link
US (2) US7534348B2 (en)
EP (1) EP1682245B1 (en)
JP (1) JP4891080B2 (en)
KR (1) KR20060105740A (en)
CN (1) CN100522308C (en)
AT (1) ATE487525T1 (en)
AU (1) AU2004287360B2 (en)
BR (1) BRPI0414270B1 (en)
CA (1) CA2538839C (en)
DE (1) DE602004030029D1 (en)
ES (1) ES2356084T3 (en)
MX (1) MXPA06002765A (en)
SG (1) SG146628A1 (en)
WO (1) WO2005044418A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782707B2 (en) 2014-03-24 2017-10-10 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US9796166B2 (en) 2014-03-24 2017-10-24 Fenwal, Inc. Flexible biological fluid filters
US9968738B2 (en) 2014-03-24 2018-05-15 Fenwal, Inc. Biological fluid filters with molded frame and methods for making such filters
US10064989B2 (en) 2013-10-03 2018-09-04 Asahi Kasei Medical Co., Ltd. Blood processing filter and blood processing filter manufacturing method
US10159778B2 (en) 2014-03-24 2018-12-25 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US10213534B2 (en) 2013-10-03 2019-02-26 Asahi Kasei Medical Co., Ltd. Blood processing filter and blood processing filter manufacturing method
US10376627B2 (en) 2014-03-24 2019-08-13 Fenwal, Inc. Flexible biological fluid filters
US10471191B2 (en) 2014-07-07 2019-11-12 Asahi Kasei Medical Co., Ltd. Blood treatment filter and blood treatment filter manufacturing method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845385B2 (en) * 2004-08-13 2011-12-28 東京エレクトロン株式会社 Deposition equipment
KR101094803B1 (en) * 2008-10-31 2011-12-16 웅진코웨이주식회사 Filter assembly
US10064988B2 (en) * 2013-06-20 2018-09-04 Fenwal, Inc. Biological fluid filters with port for optimized flow distribution
CN105658253A (en) * 2013-10-18 2016-06-08 株式会社钟化 Novel cell separation filter material and filter obtained by layering same
US10004841B2 (en) 2013-12-09 2018-06-26 Michael C. Larson Blood purifier device and method
JP6240490B2 (en) * 2013-12-12 2017-11-29 旭化成メディカル株式会社 Leukocyte and drug removal method, leukocyte and drug removal filter, and leukocyte and drug removal system
JP6411501B2 (en) * 2014-07-07 2018-10-24 旭化成メディカル株式会社 Blood processing filter and method for manufacturing blood processing filter
JP6469393B2 (en) * 2014-09-09 2019-02-13 旭化成メディカル株式会社 Blood processing filter and method for manufacturing blood processing filter
WO2016177832A1 (en) * 2015-05-07 2016-11-10 Aenitis Technologies Closed disposable multiple sterile blood bag system for fractionating blood with the corresponding method
US11096963B2 (en) 2015-06-26 2021-08-24 Cerus Corporation Cryoprecipitate compositions and methods of preparation thereof
CA3003097A1 (en) 2015-10-23 2017-04-27 Cerus Corporation Plasma compositions and methods of use thereof
FR3043918B1 (en) 2015-11-20 2018-01-05 Maco Pharma RIGID FILTRATION UNIT COMPRISING COMPRESSION PROJECTIONS
ES2944940T3 (en) * 2016-11-10 2023-06-27 Moelnlycke Health Care Ab Connector device for a negative pressure wound therapy system
AU2018227586B2 (en) 2017-03-03 2023-12-21 Cerus Corporation Kits and methods for preparing pathogen-inactivated platelet compositions
KR102111676B1 (en) * 2018-02-28 2020-06-08 주식회사 세비카 A filter set

Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864265A (en) * 1973-06-25 1975-02-04 Galen Lab Inc Edge sealed folded membrane
US3905905A (en) * 1974-01-11 1975-09-16 Ivac Corp Filter unit
US3932153A (en) * 1974-02-14 1976-01-13 John Byrns Nebulizer bacteria filter
US4009714A (en) * 1975-07-30 1977-03-01 Johnson & Johnson Intravenous solution filter unit
US4157967A (en) * 1976-03-25 1979-06-12 Baxter Travenol Laboratories, Inc. Blood filter
US4163721A (en) * 1977-04-04 1979-08-07 Cobe Laboratories, Inc. Edge sealed pleated membrane
US4170056A (en) * 1976-03-25 1979-10-09 Baxter Travenol Laboratories, Inc. Blood filter
US4283289A (en) * 1979-08-22 1981-08-11 Baxter Travenol Laboratories, Inc. Blood filter for leukocytes
US4326957A (en) * 1978-07-21 1982-04-27 Pall Corporation Vented filter spigot for intravenous liquid administration apparatus
US4453927A (en) * 1979-02-07 1984-06-12 Gesco International Method and apparatus for microfiltration of blood
US4880548A (en) * 1988-02-17 1989-11-14 Pall Corporation Device and method for separating leucocytes from platelet concentrate
US5092996A (en) * 1991-02-19 1992-03-03 Miles Inc. Blood filtering system
US5147545A (en) * 1990-04-16 1992-09-15 Eastman Kodak Company Mated disk filter housing
US5180504A (en) * 1991-05-22 1993-01-19 Baxter International Inc. Systems and methods for removing undesired matter from blood cells
US5221474A (en) * 1990-12-28 1993-06-22 Terumo Kabushiki Kaisha Transfusion filtering device
US5269917A (en) * 1992-02-28 1993-12-14 Millipore Corporation Filtration apparatus having stress relief groove
US5290238A (en) * 1992-06-10 1994-03-01 Imed Corporation Self priming tubing set for an infusion device
US5451321A (en) * 1990-05-24 1995-09-19 Pall Corporation Venting system
US5458719A (en) * 1993-03-24 1995-10-17 Pall Corporation Method for bonding a porous medium to a substrate
US5472605A (en) * 1994-03-10 1995-12-05 Hemasure, Inc. Filtration device useable for removal of leukocytes and other blood components
US5472621A (en) * 1992-06-10 1995-12-05 Pall Corporation Method for treating transition zone material
US5501795A (en) * 1989-05-09 1996-03-26 Pall Corporation Device for depletion of the leucocyte content of blood and blood components
US5578736A (en) * 1993-06-28 1996-11-26 Steritech, Inc. Compounds for the photo-decontamination of pathogens in blood
US5593823A (en) * 1993-06-28 1997-01-14 Cerus Corporation Method for inactivating pathogens in blood using photoactivation of 4'-primary amino-substituted psoralens
US5601730A (en) * 1992-09-02 1997-02-11 Pall Corporation Process and apparatus for removal of unwanted fluids from processed blood products
US5660731A (en) * 1994-11-08 1997-08-26 Pall Corporation Filter for separating photoactive agent
US5853587A (en) * 1996-12-14 1998-12-29 Young; Richard T. Corrosive resistant disk filter
US5938940A (en) * 1995-09-06 1999-08-17 Hemasure Inc. In-line liquid filtration device and method useable for blood and blood products
US5975312A (en) * 1997-08-28 1999-11-02 Black, Sivalls & Bryson, Limited (Canada) Fluid filter
US6010633A (en) * 1997-03-06 2000-01-04 Hemasure Inc. Method of preventing air from becoming entrapped within a filtration device
US6051136A (en) * 1994-08-18 2000-04-18 Mari; Giorgio Disposable sterile apparatus for blood filtration with a system for optimizing the recovery of blood between pouches
US6080762A (en) * 1998-04-08 2000-06-27 Eli Lilly And Company Pulmonary and nasal delivery of raloxifene
US6093725A (en) * 1997-01-06 2000-07-25 Cerus Corporation Frangible compounds for pathogen inactivation
US6159377A (en) * 1998-02-06 2000-12-12 Renal Tech International Llc Method of purification of physiological liquids of organism
US6168653B1 (en) * 1997-05-15 2001-01-02 Filtertek, Inc Pressure transmission apparatus
US6171493B1 (en) * 1998-03-20 2001-01-09 Lexion Medical Biological fluid filtration apparatus
US6190855B1 (en) * 1996-10-28 2001-02-20 Baxter International Inc. Systems and methods for removing viral agents from blood
US6251292B1 (en) * 1994-03-10 2001-06-26 Hemasure, Inc. Method of preventing air from becoming entrapped within a filtration device
US6258577B1 (en) * 1998-07-21 2001-07-10 Gambro, Inc. Method and apparatus for inactivation of biological contaminants using endogenous alloxazine or isoalloxazine photosensitizers
US20010009756A1 (en) * 1998-01-06 2001-07-26 Derek Hei Flow devices for the reduction of compounds from biological compositions and methods of use
US6268120B1 (en) * 1999-10-19 2001-07-31 Gambro, Inc. Isoalloxazine derivatives to neutralize biological contaminants
US6277337B1 (en) * 1998-07-21 2001-08-21 Gambro, Inc. Method and apparatus for inactivation of biological contaminants using photosensitizers
US20010018179A1 (en) * 1998-01-06 2001-08-30 Derek J. Hei Batch devices for the reduction of compounds from biological compositions containing cells and methods of use
US6337026B1 (en) * 1999-03-08 2002-01-08 Whatman Hemasure, Inc. Leukocyte reduction filtration media
US6358420B2 (en) * 1998-06-01 2002-03-19 Baxter International Inc. Blood collection method employing an air venting blood sample tube
US6364864B1 (en) * 1999-06-03 2002-04-02 Baxter International Inc. Plastic containers having inner pouches and methods for making such containers
US6410219B1 (en) * 1994-11-14 2002-06-25 Cerus Corporation Treating blood or blood products with compounds which have a mustard, azirdinium or aziridine group and a nucleic acid binding group
US6488860B2 (en) * 1997-03-24 2002-12-03 Fresenius Ag Device and method for separating blood into blood components
US6544727B1 (en) * 1995-06-07 2003-04-08 Cerus Corporation Methods and devices for the removal of psoralens from blood products
US20030146162A1 (en) * 1999-06-03 2003-08-07 Metzel Peyton S. Fluid processing sets and organizers for the same
US7025877B1 (en) * 1999-06-03 2006-04-11 Baxter International Inc. Processing set for processing and treating a biological fluid
US7060183B1 (en) * 1999-12-10 2006-06-13 Macopharma Unit for filtering a fluid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB978065A (en) 1962-11-13 1964-12-16 Johnson & Johnson Filter assembly
JPS5917356A (en) * 1982-07-22 1984-01-28 旭化成株式会社 Adsorbing material and apparatus for purifying body liquid having anti-thrombotic property
IL88081A0 (en) * 1987-10-20 1989-06-30 Pall Corp Device and method for depletion of the leucocyte content of blood and blood components
CA2094051A1 (en) 1992-04-30 1993-10-31 James T. Connors, Jr. Filter for filtering an aggressive fluid
GB9522999D0 (en) * 1995-11-09 1996-01-10 Smiths Industries Ltd Filters
US6143174A (en) 1996-09-05 2000-11-07 Sartorius Ag Filtration unit with pleated filtering elements
DE19636006A1 (en) * 1996-09-05 1998-03-12 Sartorius Gmbh Filtration unit with pleated filter elements
IT1293856B1 (en) * 1997-06-27 1999-03-10 Borla Ind TRANSDUCER-PROTECTOR DEVICE FOR BIOMEDICAL HEMODIALYSIS LINES
FR2799986B1 (en) * 1999-10-20 2001-11-23 Maco Pharma Sa FILTER UNIT OF A VIRUCID SUBSTANCE

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864265A (en) * 1973-06-25 1975-02-04 Galen Lab Inc Edge sealed folded membrane
US3905905A (en) * 1974-01-11 1975-09-16 Ivac Corp Filter unit
US3932153A (en) * 1974-02-14 1976-01-13 John Byrns Nebulizer bacteria filter
US4009714A (en) * 1975-07-30 1977-03-01 Johnson & Johnson Intravenous solution filter unit
US4157967A (en) * 1976-03-25 1979-06-12 Baxter Travenol Laboratories, Inc. Blood filter
US4170056A (en) * 1976-03-25 1979-10-09 Baxter Travenol Laboratories, Inc. Blood filter
US4163721A (en) * 1977-04-04 1979-08-07 Cobe Laboratories, Inc. Edge sealed pleated membrane
US4326957A (en) * 1978-07-21 1982-04-27 Pall Corporation Vented filter spigot for intravenous liquid administration apparatus
US4453927A (en) * 1979-02-07 1984-06-12 Gesco International Method and apparatus for microfiltration of blood
US4283289A (en) * 1979-08-22 1981-08-11 Baxter Travenol Laboratories, Inc. Blood filter for leukocytes
US4880548A (en) * 1988-02-17 1989-11-14 Pall Corporation Device and method for separating leucocytes from platelet concentrate
US5501795A (en) * 1989-05-09 1996-03-26 Pall Corporation Device for depletion of the leucocyte content of blood and blood components
US5147545A (en) * 1990-04-16 1992-09-15 Eastman Kodak Company Mated disk filter housing
US5451321A (en) * 1990-05-24 1995-09-19 Pall Corporation Venting system
US5221474A (en) * 1990-12-28 1993-06-22 Terumo Kabushiki Kaisha Transfusion filtering device
US5092996A (en) * 1991-02-19 1992-03-03 Miles Inc. Blood filtering system
US5180504A (en) * 1991-05-22 1993-01-19 Baxter International Inc. Systems and methods for removing undesired matter from blood cells
US5269917A (en) * 1992-02-28 1993-12-14 Millipore Corporation Filtration apparatus having stress relief groove
US5472621A (en) * 1992-06-10 1995-12-05 Pall Corporation Method for treating transition zone material
US5290238A (en) * 1992-06-10 1994-03-01 Imed Corporation Self priming tubing set for an infusion device
US5601730A (en) * 1992-09-02 1997-02-11 Pall Corporation Process and apparatus for removal of unwanted fluids from processed blood products
US5458719A (en) * 1993-03-24 1995-10-17 Pall Corporation Method for bonding a porous medium to a substrate
US5578736A (en) * 1993-06-28 1996-11-26 Steritech, Inc. Compounds for the photo-decontamination of pathogens in blood
US5593823A (en) * 1993-06-28 1997-01-14 Cerus Corporation Method for inactivating pathogens in blood using photoactivation of 4'-primary amino-substituted psoralens
US5472605A (en) * 1994-03-10 1995-12-05 Hemasure, Inc. Filtration device useable for removal of leukocytes and other blood components
US6251292B1 (en) * 1994-03-10 2001-06-26 Hemasure, Inc. Method of preventing air from becoming entrapped within a filtration device
US6051136A (en) * 1994-08-18 2000-04-18 Mari; Giorgio Disposable sterile apparatus for blood filtration with a system for optimizing the recovery of blood between pouches
US5660731A (en) * 1994-11-08 1997-08-26 Pall Corporation Filter for separating photoactive agent
US6410219B1 (en) * 1994-11-14 2002-06-25 Cerus Corporation Treating blood or blood products with compounds which have a mustard, azirdinium or aziridine group and a nucleic acid binding group
US6544727B1 (en) * 1995-06-07 2003-04-08 Cerus Corporation Methods and devices for the removal of psoralens from blood products
US5938940A (en) * 1995-09-06 1999-08-17 Hemasure Inc. In-line liquid filtration device and method useable for blood and blood products
US6190855B1 (en) * 1996-10-28 2001-02-20 Baxter International Inc. Systems and methods for removing viral agents from blood
US5853587A (en) * 1996-12-14 1998-12-29 Young; Richard T. Corrosive resistant disk filter
US6093725A (en) * 1997-01-06 2000-07-25 Cerus Corporation Frangible compounds for pathogen inactivation
US6010633A (en) * 1997-03-06 2000-01-04 Hemasure Inc. Method of preventing air from becoming entrapped within a filtration device
US6488860B2 (en) * 1997-03-24 2002-12-03 Fresenius Ag Device and method for separating blood into blood components
US6168653B1 (en) * 1997-05-15 2001-01-02 Filtertek, Inc Pressure transmission apparatus
US5975312A (en) * 1997-08-28 1999-11-02 Black, Sivalls & Bryson, Limited (Canada) Fluid filter
US20010009756A1 (en) * 1998-01-06 2001-07-26 Derek Hei Flow devices for the reduction of compounds from biological compositions and methods of use
US20010018179A1 (en) * 1998-01-06 2001-08-30 Derek J. Hei Batch devices for the reduction of compounds from biological compositions containing cells and methods of use
US6159377A (en) * 1998-02-06 2000-12-12 Renal Tech International Llc Method of purification of physiological liquids of organism
US6171493B1 (en) * 1998-03-20 2001-01-09 Lexion Medical Biological fluid filtration apparatus
US20020148765A1 (en) * 1998-03-20 2002-10-17 Majid Zia Biological fluid filtration method and apparatus
US6080762A (en) * 1998-04-08 2000-06-27 Eli Lilly And Company Pulmonary and nasal delivery of raloxifene
US6358420B2 (en) * 1998-06-01 2002-03-19 Baxter International Inc. Blood collection method employing an air venting blood sample tube
US6258577B1 (en) * 1998-07-21 2001-07-10 Gambro, Inc. Method and apparatus for inactivation of biological contaminants using endogenous alloxazine or isoalloxazine photosensitizers
US6277337B1 (en) * 1998-07-21 2001-08-21 Gambro, Inc. Method and apparatus for inactivation of biological contaminants using photosensitizers
US6337026B1 (en) * 1999-03-08 2002-01-08 Whatman Hemasure, Inc. Leukocyte reduction filtration media
US6364864B1 (en) * 1999-06-03 2002-04-02 Baxter International Inc. Plastic containers having inner pouches and methods for making such containers
US20030146162A1 (en) * 1999-06-03 2003-08-07 Metzel Peyton S. Fluid processing sets and organizers for the same
US7025877B1 (en) * 1999-06-03 2006-04-11 Baxter International Inc. Processing set for processing and treating a biological fluid
US6268120B1 (en) * 1999-10-19 2001-07-31 Gambro, Inc. Isoalloxazine derivatives to neutralize biological contaminants
US7060183B1 (en) * 1999-12-10 2006-06-13 Macopharma Unit for filtering a fluid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10064989B2 (en) 2013-10-03 2018-09-04 Asahi Kasei Medical Co., Ltd. Blood processing filter and blood processing filter manufacturing method
US10213534B2 (en) 2013-10-03 2019-02-26 Asahi Kasei Medical Co., Ltd. Blood processing filter and blood processing filter manufacturing method
US9782707B2 (en) 2014-03-24 2017-10-10 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US9796166B2 (en) 2014-03-24 2017-10-24 Fenwal, Inc. Flexible biological fluid filters
US9968738B2 (en) 2014-03-24 2018-05-15 Fenwal, Inc. Biological fluid filters with molded frame and methods for making such filters
US10159778B2 (en) 2014-03-24 2018-12-25 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US10183475B2 (en) 2014-03-24 2019-01-22 Fenwal, Inc. Flexible biological fluid filters
US10343093B2 (en) 2014-03-24 2019-07-09 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US10376627B2 (en) 2014-03-24 2019-08-13 Fenwal, Inc. Flexible biological fluid filters
US10471191B2 (en) 2014-07-07 2019-11-12 Asahi Kasei Medical Co., Ltd. Blood treatment filter and blood treatment filter manufacturing method

Also Published As

Publication number Publication date
WO2005044418A2 (en) 2005-05-19
CN1849161A (en) 2006-10-18
JP4891080B2 (en) 2012-03-07
KR20060105740A (en) 2006-10-11
CN100522308C (en) 2009-08-05
CA2538839A1 (en) 2005-05-19
JP2007504947A (en) 2007-03-08
EP1682245A2 (en) 2006-07-26
CA2538839C (en) 2014-02-18
ATE487525T1 (en) 2010-11-15
DE602004030029D1 (en) 2010-12-23
SG146628A1 (en) 2008-10-30
BRPI0414270A (en) 2006-11-07
ES2356084T3 (en) 2011-04-04
WO2005044418A3 (en) 2005-08-25
US7534348B2 (en) 2009-05-19
EP1682245B1 (en) 2010-11-10
AU2004287360B2 (en) 2010-04-15
BRPI0414270B1 (en) 2015-02-03
AU2004287360A1 (en) 2005-05-19
MXPA06002765A (en) 2006-06-14
US20050056580A1 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
US20060108272A1 (en) Flow-through removal device and system using such device
US5938940A (en) In-line liquid filtration device and method useable for blood and blood products
EP1847283B1 (en) Particle separation method
AU725080B2 (en) Multiple element filter
US5906570A (en) Particle filter apparatus
US6601710B2 (en) Filter assembly having a flexible housing
AU649457B2 (en) Venting system
US5674173A (en) Apparatus for separating particles
KR101498138B1 (en) Cell harvesting device and system
KR101476752B1 (en) Filter device
CA2126745A1 (en) Priming system
EP2476445B1 (en) Filter unit
JPWO2004082741A1 (en) Blood treatment set and cell treatment set
WO1997018844A1 (en) Inactivation method and system in biological fluids

Legal Events

Date Code Title Description
AS Assignment

Owner name: FENWAL, INC.,ILLINOIS

Free format text: PATENT ASSIGNMENT;ASSIGNOR:BAXTER INTERNATIONAL INC.;REEL/FRAME:019129/0001

Effective date: 20070301

Owner name: FENWAL, INC., ILLINOIS

Free format text: PATENT ASSIGNMENT;ASSIGNOR:BAXTER INTERNATIONAL INC.;REEL/FRAME:019129/0001

Effective date: 20070301

AS Assignment

Owner name: MORGAN STANLEY & CO. INCORPORATED,NEW YORK

Free format text: FIRST-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:FENWAL, INC.;FENWAL HOLDINGS, INC.;REEL/FRAME:019280/0211

Effective date: 20070228

Owner name: MORGAN STANLEY & CO. INCORPORATED, NEW YORK

Free format text: FIRST-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:FENWAL, INC.;FENWAL HOLDINGS, INC.;REEL/FRAME:019280/0211

Effective date: 20070228

AS Assignment

Owner name: MORGAN STANLEY & CO. INCORPORATED,NEW YORK

Free format text: SECOND-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:FENWAL, INC.;FENWAL HOLDINGS, INC.;REEL/FRAME:019297/0168

Effective date: 20070228

Owner name: MORGAN STANLEY & CO. INCORPORATED, NEW YORK

Free format text: SECOND-LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:FENWAL, INC.;FENWAL HOLDINGS, INC.;REEL/FRAME:019297/0168

Effective date: 20070228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: FENWAL HOLDINGS, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY & CO. LLC;REEL/FRAME:029480/0597

Effective date: 20121213

Owner name: FENWAL HOLDINGS, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY & CO. LLC;REEL/FRAME:029480/0549

Effective date: 20121213

Owner name: FENWAL, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY & CO. LLC;REEL/FRAME:029480/0549

Effective date: 20121213

Owner name: FENWAL, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY & CO. LLC;REEL/FRAME:029480/0597

Effective date: 20121213