US20100133203A1 - Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system - Google Patents

Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system Download PDF

Info

Publication number
US20100133203A1
US20100133203A1 US12/311,033 US31103307A US2010133203A1 US 20100133203 A1 US20100133203 A1 US 20100133203A1 US 31103307 A US31103307 A US 31103307A US 2010133203 A1 US2010133203 A1 US 2010133203A1
Authority
US
United States
Prior art keywords
bag
irradiation
blood
storage
platelet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/311,033
Inventor
Wolfram Hubert Walker
Frank Tolksdorf
Thierry Verpoort
Francis Goudaliez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maco Pharma SAS
Original Assignee
Maco Pharma SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maco Pharma SAS filed Critical Maco Pharma SAS
Assigned to MACO PHARMA S.A. reassignment MACO PHARMA S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOUDALIEZ, FRANCIS, TOLKSDORF, FRANK, VERPOORT, THIERRY, WALKER, WOLFRAM HUBERT
Publication of US20100133203A1 publication Critical patent/US20100133203A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0272Apparatus for treatment of blood or blood constituents prior to or for conservation, e.g. freezing, drying or centrifuging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/10Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person
    • A61K41/17Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person by ultraviolet [UV] or infrared [IR] light, X-rays or gamma rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0047Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0209Multiple bag systems for separating or storing blood components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0209Multiple bag systems for separating or storing blood components
    • A61M1/0218Multiple bag systems for separating or storing blood components with filters
    • A61M1/0222Multiple bag systems for separating or storing blood components with filters and filter bypass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0209Multiple bag systems for separating or storing blood components
    • A61M1/0231Multiple bag systems for separating or storing blood components with gas separating means, e.g. air outlet through microporous membrane or gas bag
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3681Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • B65B55/08Sterilising wrappers or receptacles prior to, or during, packaging by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/12Sterilising contents prior to, or during, packaging
    • B65B55/16Sterilising contents prior to, or during, packaging by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B7/00Closing containers or receptacles after filling
    • B65B7/02Closing containers or receptacles deformed by, or taking-up shape, of, contents, e.g. bags, sacks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • A61J1/12Bag-type containers with means for holding samples of contents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/22Blood or products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/23Containers, e.g. vials, bottles, syringes, mail
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • A61M2205/051General characteristics of the apparatus combined with other kinds of therapy with radiation therapy
    • A61M2205/053General characteristics of the apparatus combined with other kinds of therapy with radiation therapy ultraviolet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production

Definitions

  • the present invention relates to a blood bag system, a method for its manufacture and a process for reducing pathogens and leucocytes in biological fluids in particular in therapeutic quantities of platelet concentrates (PC).
  • PC platelet concentrates
  • the present invention relates to the viral and bacterial safety of platelet concentrates.
  • Platelet concentrates are commonly prepared from human blood donation by apheresis techniques or by a so called “buffy-coat pooling technique”. Both methods result in platelet concentrates, which commonly contain between 2 to 5 ⁇ 10 11 platelets in a plasma volume of 100 to 400 ml. Such blood products are called platelet concentrates and are suitable for therapeutic applications in patients with platelet deficiencies.
  • Platelet concentrates are generally stored in blood banks in liquid state commonly at room temperature and for a defined period of time. It is desirable to perform pathogen reduction before storage to avoid increase of pathogen concentration during storage. Furthermore, blood banks are interested in increasing the shelf life time of platelet concentrates to allow for the necessary availability of such blood products considering the average amount donated versus the total used in transfusion in peak times.
  • EP 0 933 090-A discloses a blood bag system for storing blood components comprising photosensitizers.
  • the blood bag system comprises a leucocyte filter and tubing connecting the filter with two blood bags.
  • One blood bag comprises the blood product in need for viral inactivation, the other is intended to comprise the mixture of the blood product and the photoactive compound.
  • the system furthermore allows for removal of the photoactive compound and if necessary its photoproducts generated during irradiation.
  • French patent application FR 200506296 describes a blood bag system for the storage of platelet concentrates, which allows sampling of the platelet concentrates through an integrated sampling bag whereby detections of pathogens in the blood or the platelet concentrates are possible.
  • US 2001/0046450 A1 discloses a method and an apparatus for inactivating contaminants in blood products.
  • the blood product is guided past a source of UV-C radiation whereby the flow of the blood product is controlled to receive irradiation doses of lower than 640 J/m 2 .
  • the blood product is substantially free of non-enveloped viruses after the irradiation.
  • the apparatus includes an emitter of type C ultraviolet radiation placed so as to emit type C radiation toward the blood product in a quartz tube or a tube made of polymer material which does not absorb type C radiation.
  • the apparatus also includes a flow meter for controlling the flow rate of the blood product to be treated.
  • German patent application 10 2005 062 410.3 filed 23 Dec. 2005 by the present applicant as co-applicant, teaches a process for the reduction of pathogens and/or leucocytes in platelet concentrates using flexible UV-transparent blood bags, the contents of which is made of full reference for the present application.
  • the flexible blood bags are irradiated while agitating the bag.
  • US 2003/0228564 discloses a method of inactivating pathogens in blood and blood components by adding riboflavin and nitric oxide in the blood or blood components and irradiating under agitation the blood or blood component with UV or visible light.
  • the Sengewald bag used in the method is not designed to avoid dead areas during the irradiation.
  • Pathogens like viruses, bacteria, spores, fungi, protozoa as well as leucocytes shall be inactivated to an extend to allow save storage of the platelet concentrates at room temperature and in liquid state for several days without impairing the therapeutic efficiency of the concentrates.
  • Another object of the present invention is to develop a disposable plastic bag system, comprising one or more bags for illuminating the PC and for the storage and transfusion of the platelet concentrate.
  • a platelet storage solution to form a suspended PC.
  • the suspended PC contained in the blood bag at least 20 weight %, most preferred 70% of the plasma content of the platelet concentrates is exchanged against a platelet storage solution.
  • the platelet concentrate treated as described above can be stored for an extended time without impairment of the platelet quality.
  • the blood bag system comprises either one bag for irradiation with UV light and storage of a suspended PC, wherein the irradiation bag forms at the same time the storage bag, or comprises a first bag for irradiation (irradiation bag) with UV light and a second bag (storage bag) for storage wherein in each of the different blood bag systems the irradiated suspended PC can be stored for up to 10 clays without clinically significant reduction of the therapeutic quality.
  • the blood bag system comprises a leucodepletion filter for leucodepletion of the inlet stream of non-irradiated PC.
  • the leucodepletion filter for above purpose is preferably incorporated in the inlet tubing of the irradiation bag.
  • the irradiation bag is made from an UV-transparent plastic material. Suitable polymer materials are polyolefins and ethylene vinyl acetate (EVA), extruded or calendered to wall thicknesses of 0.8 mm or less, in particular about 0.5 mm or less. The plastic foils obtained can be sealed to form a bag.
  • the irradiation bag has a substantially flat inside.
  • the bag is made from material that has no adsorption maximum in the range of 200 to 270 nm. Thickness and quality of the EVA material after sterilization is such, that it shows minimal adsorption of UV-light. Particularly preferred are EVA polymers of low polymerisation degree and low crosslinking.
  • the UV-Light adsorption may also be influenced by the acetylation degree of the EVA.
  • the volume capacity of the irradiation bag is at least 5 times and most preferred at least 10 times of the actual storage volume of PC/suspended PC stored in the bag.
  • the volume capacity of the irradiation bag is defined as maximum filling volume obtained by gravity flow of water into the bag at 1 m bight difference.
  • the actual storage volume of PC is the volume, in which the PC is stored, which includes both plasma and platelet storage solution.
  • the volume capacity of the irradiation bag is 5000 ml and the actual storage volume of PC is 500 ml. Therefore the ratio of volume capacity of the irradiation bag to PC volume is factor 10. Consequently, the irradiation bag is not completely filled with PC.
  • the irradiation bag is filled at most 20% and preferably 1 to 10% and most preferred 1 to below 10% (each in Vol. %) of its capacity with biological fluid.
  • the irradiation bag after filling with PC is only a few millimetres thick, such as less than 5 mm.
  • bags of a dimension of 19 ⁇ 38 cm filled with 200 to 300 ml of PC have a thickness of below 5 mm.
  • the tubes entering into the bag have small diameters.
  • the inside of the irradiation bag preferably comprises cut off or rounded corners. When viewed from the top, the inside of the irradiation bag have at least 4, preferably 5 or even 8 corners or forms a circle or oval when filled with suspended PC. So the inside of the irradiation bag has a round or oval volume when filled.
  • the irradiation bag has one or more inlet tubes for filling the PC into the irradiation bag and optionally one or more outlet tubes for discharging the irradiated PC into the storage bag.
  • the irradiation bag is further provided with means for preventing fluid access into the inlet and/or outlet tubes such that no dead area is formed inside the bag.
  • the inlet side of the bag clamped off or sealed off after filling of the bag with the PC to avoid dead areas of the irradiation bag.
  • the sealing can be performed in such a manner, that the corner is cut off and therefore has a shape of a rounded corner or similar to a rounded corner.
  • the inlet tube is preferably located at one corner of the irradiation bag, between the two plastic foils forming the irradiation bag.
  • a sealed compartment is formed into which the inlet tube opens.
  • the sealed compartment preferably does not contain PC and is separated from the main compartment of the bag containing the PC.
  • the irradiation bag comprises a partial seal extending from one edge of the bag to an adjacent edge thereto, thereby partially enclosing the opening of the inlet tube.
  • the outlet opening may preferably contain a clamp off part or break-off part, so that no PC can enter into the outlet tube. After irradiation the outlet part or break-off part is opened, so that the irradiated, pathogen inactivated PC can be transferred through the tube 3 into the storage bag (see FIG. 3 and FIG. 4 ).
  • the bag may additionally have an area where a bag label or a lot number may be placed. Such area is not used for storing PC and is outside the area of irradiation since it is beneficial to irradiate the irradiation bag from both sides of the bag.
  • the storage bag may be made from PVC material comprising DEHP, citrate esters or Trioctyl trimellitate (TOTM) as plasticizer.
  • the storage bag consists of the same UV-transparent plastic material as the irradiation bag.
  • the storage bag shows gas permeability, in particular oxygen and carbon dioxide permeability, and platelet compatibility, so that the PC can be stored for up to 10 days preferably under a slight agitation.
  • the bag system may be sterilized by standard techniques like steam or ethylene oxide treatment or by ⁇ -rays irradiation, so that the bags and tubes allow sterile preparations after pathogen reduction.
  • aqueous salt solution to form a suspended PC, which is suitable for platelet storage.
  • a preferred aqueous salt solution is SSP+ as marketed by MacoPharma.
  • the plasma in the PC to be irradiated may be substituted by 50 to 95 weight %, preferably 70 to 80 weight % with SSP+.
  • Optimal storage of PC in storage bag is characterized by in vitro parameters like swirling, pH, osmotic stability and aggregation, as described in table 1. With the platelet storage solution UV-irradiation, mixing of the partially plasma exchanged PC by agitation of the irradiation bag and storage in the storage bag is optimal.
  • UV-irradiation is ideally performed from both sides of the bag, preferably at the same time. UV-irradiation must be at least partially accompanied by agitation of the irradiation bag. Agitation must be such that a homogenous mixing of the PC is performed and at same time, during mixing of the PC, thicknesses of the irradiation bag must be such that the UV light penetrates through the PC.
  • the irradiation bag is agitated while irradiated by means of a steady agitation using an amplitude of from 0.2 to 8 cm in the x and the y direction of the plane, and a frequency of the amplitude from 10 to 200 Hz.
  • x and y are the same and the path is circular,
  • UV-light Light of wavelengths in between 200 to 400 nm covering UV-A, UV-B and UV-C is used for irradiation. It was found, however, that the UV-light suited best for the procedure is UV-C-light with frequencies between 200 to 350 nm, in particular 200 to 270 nm.
  • the UV-C-light used may also contain components of UV-B and UV-A as well as visible light components. According to a preferred embodiment monochromatic UV-C-light, with an emission maximum of 254 nm is used.
  • the light dose for irradiation may be between 0.01 and 2 J/cm 2 , however, depending on the frequency range and filters used and the PC layer thickness in the illumination bag, other energies are possible. This also depends on whether the light has been generated by a quartz lamp, light emitting diodes (LEDs) or flash lights, e.g. by Eximer lamps.
  • LEDs light emitting diodes
  • Eximer lamps e.g. by Eximer lamps.
  • FIG. 1 shows a blood bag system according to the invention.
  • FIG. 2 shows a further embodiment of the blood bag system of FIG. 1 additionally comprising a leucocyte filter and a sampling bag.
  • FIG. 3 shows an embodiment, where details of the bag size and of the inlet and outlet tube of the irradiation bag are depicted.
  • FIG. 4 shows a different embodiment, wherein the irradiation bag and the storage bag form one bag.
  • FIG. 5 shows a different embodiment of the irradiation bag of the blood bag system.
  • the plastic double bag system shown in FIG. 1 comprises an inlet tube 1 connected to the irradiation bag 2 to sample the incoming stream of the processed PC comprising platelet storage solution.
  • the irradiation bag 2 is connected through a second tube 3 to a storage bag 4 , used for storage and administering the blood product to a patient in need for platelets.
  • the tube 3 is sealed off and thus the irradiation bag 2 is separated from the storage bag 4 .
  • the storage bag 4 comprises a port 6 for spikes and optionally an additional third tube 7 , which may be used for sampling, under which circumstances the third tube 7 may be connected to a sampling bag 10 .
  • FIG. 2 A further embodiment of the blood bag system is schematically depicted in FIG. 2 .
  • the blood bag system further comprises a leucocyte filter 8 included in the inlet tube 1 .
  • This leucocyte filter may be bypassed by a bypass tube 5 further allowing air venting of the irradiation bag 2 .
  • the sampling bag 10 allows the early and late detection of contaminants in PC, as explained in the above mentioned FR 200506296. Briefly, at the time of the filling of the storage bag 4 , a sample of PC is transferred into the sample bag 10 . Before the storage of the PC, a first contamination test is performed on a first part of the sampled PC, the first part being taken from the sample bag 10 via a first outlet 11 .
  • the PC is stored. Before the transfusion of the PC to a patient, a second contamination test is performed on a second part of the sampled PC taken from the sample bag 10 via a second outlet 11 .
  • the bags in the blood bag system as shown in FIGS. 1 and 2 further have clamps or break-off parts 13 to close or otherwise allow free flow of the platelet concentrate through the tubing.
  • FIG. 3 depicts a variation of the irradiation bag 2 of FIG. 1 .
  • the inlet tube 1 is moved to the one corner of the bag, which does not show any corner cut-off inside the bag.
  • this part may be sealed off along the line 16 , which can be placed using a suitable heat seal or high frequency sealing system to result in cut-off corner of the bag.
  • the reason to have the corner of the irradiation bag rounded or cut-off, is not to have dead areas during the agitation and irradiation steps described above.
  • This preferred embodiment shows also a break-off part 15 , which closes the tube 3 and which might be opened after irradiation, thus allowing free flow of the irradiated PC through the tube 3 into the storage bag.
  • This break-off part is constructed and placed into the bag such, that no dead areas do exist, in which PC is trapped and not agitated during the irradiation process.
  • This break-off part may be substituted by any system suitable for closing and opening of bags, like ball valves, plugs or other systems.
  • FIG. 3 shows a bag having a square format, where the length and the height of the bag are almost the same.
  • the inside forms an octagon.
  • Bag 2 can also be constructed as a circular bag, containing in- and outlets.
  • the bag ( 2 ) is suitable for illumination, storage and transfusion of PC.
  • tube 1 is sterilely docked to a PC source, obtainable from blood donations by apheresis or by a buffy-coat pool procedure.
  • the inlet tube 1 may contain spike ( 14 ).
  • Bag 2 + 4 shown in FIG. 4 may be used as storage bag 2 and irradiation bag 4 at the same time.
  • a closure 17 in form of a part which allows connection with spikes of transfusion sets.
  • FIG. 5 Another example of the irradiation bag is illustrated in FIG. 5 .
  • the irradiation bag 2 is provided with an inlet tube 1 for filling the bag with PC/suspended PC and an outlet tube 3 for discharging the PC/suspended PC into a storage bag.
  • the irradiation bag 2 comprises a partial seal 17 extending from one edge of the bag to an adjacent edge thereof.
  • the seal creates a first sealed compartment enclosing the opening of the inlet tube 1 and a second sealed compartment comprising the PC/suspended PC.
  • This first sealed compartment prevents the PC contained in the second sealed compartment to enter the inlet tube 1 . In that way, the bag does not contain any dead area, ensuring that all PC is agitated and irradiated during the inactivation process.
  • the seal 16 , 17 enclosing the inlet tube 1 at one edge of the irradiation bag 2 is symmetrical to at least another edge, thereby providing a symmetrical irradiation bag.
  • This particular shape improves the agitation of the content of the bag.
  • the irradiation bag also comprises an outlet tube provided with a plug 18 , ensuring that no PC/suspended PC enters the outlet tube.
  • the plug 18 is simply removed from the outlet tube 3 by pressing manually the outlet tube to expel the plug 18 into the bag.
  • the blood bag system and the method described herein and in particular with reference to FIG. 1 to FIG. 5 can as well be applied to reduce pathogens in other biological fluids such as platelet lysates, stem cell suspensions, tissue culturing media, plasma, plasma and proteins solutions.
  • biological fluids such as platelet lysates, stem cell suspensions, tissue culturing media, plasma, plasma and proteins solutions.
  • PC or suspended PC in this application may be exchanged against any one of above biological fluids.
  • blood bag system itself is not intended to limit the bag or the method disclosed herein to a use in connection with biological fluids that are derived from blood only. Except that the suspended PC is exchanged against the other biological fluids all features described in more detail in the general part hereinbefore are applicable as well.
  • a preferred bag system and procedure uses a first bag with the size of an irradiation surface of 19 ⁇ 38 cm, consisting of a flexible EVA-sheeting with 0.25 mm thickness, with min. UV-adsorption characteristics.
  • the irradiation bag is filled with 300 ml of suspended PC with 4 ⁇ 10 11 platelets, leukodepleted to less than 10 6 residual leucocytes per PC, in plasma, where 70 weight % of the plasma has been replaced by SSP+ by MacoPharma as Storage Solution for PC.
  • the SSP+ solution comprises (in g/l):
  • the PC in bag was irradiated horizontally for a period of 2 min. from both sides at the same time, using an UVC irradiation machine with quartz tubes, VIS-light filter, under orbital agitation of the bag at 100 Hz with amplitude of 2 cm in one axis and 4 cm in the other axis at room temperature.
  • orbital mixing is preferred over circular mixing. Under these conditions a homogeneous mixing of the PC is reached.
  • the fluid shows a profile with high and very low liquid thickness in the flexible bag with a distribution of moving and standing waves in the bag.
  • the treated PC was transferred into the second bag, which consisted of a 1000 to 1500 ml bag of EVA (alternatively PVC/TOTM sheeting may be used), allowing sufficient gas exchange for CO 2 ) and O 2 during up to 10 days storage, under slight horizontal agitation at room temperature.
  • EVA alternatively PVC/TOTM sheeting may be used
  • This inactivation method does not require the addition of an inactivating substance, such as photosensitive or photodynamic active substance, in the biological fluid to be treated. No further step, e.g. removal of the inactivating substance, is necessary. It is acknowledged that UVC directly activates nucleotides of viruses and bacteria, without the need of exogenous substances.
  • an inactivating substance such as photosensitive or photodynamic active substance

Abstract

The present invention relates to a blood bag system, a method for its manufacture, and a process for reducing pathogens and leucocytes in biological fluids in particular in therapeutic quantities of platelet concentrates (PC) contained in the blood bag system, using UV-light and agitation, wherein part of the plasma of the PC is optionally exchanged against a platelet additive solution.

Description

  • The present invention relates to a blood bag system, a method for its manufacture and a process for reducing pathogens and leucocytes in biological fluids in particular in therapeutic quantities of platelet concentrates (PC).
  • The presence of potentially pathogenic materials such as viruses and/or bacteria in biological fluids is of great concern for many protocols, particularly those involving the processing of blood and/or blood components, e.g. to obtain transfusion products to be administered to patients. A number of diagnostic tests are developed and routinely used to assure viral and bacterial safety of blood products. Despite intense testing, it is difficult to assure the required degree of absence of pathogens in blood products. Pathogens exist in human blood donations and may lead to infectivity at the recipient. It is therefore required to find and use save procedures which allow the destruction and/or removal of such pathogens in human blood or blood products.
  • The present invention relates to the viral and bacterial safety of platelet concentrates. Platelet concentrates are commonly prepared from human blood donation by apheresis techniques or by a so called “buffy-coat pooling technique”. Both methods result in platelet concentrates, which commonly contain between 2 to 5×1011 platelets in a plasma volume of 100 to 400 ml. Such blood products are called platelet concentrates and are suitable for therapeutic applications in patients with platelet deficiencies.
  • Platelet concentrates are generally stored in blood banks in liquid state commonly at room temperature and for a defined period of time. It is desirable to perform pathogen reduction before storage to avoid increase of pathogen concentration during storage. Furthermore, blood banks are interested in increasing the shelf life time of platelet concentrates to allow for the necessary availability of such blood products considering the average amount donated versus the total used in transfusion in peak times.
  • PRIOR ART SECTION
  • In the literature a number of blood bag arrangements have been suggested for storing and treating blood products.
  • EP 0 933 090-A discloses a blood bag system for storing blood components comprising photosensitizers. The blood bag system comprises a leucocyte filter and tubing connecting the filter with two blood bags. One blood bag comprises the blood product in need for viral inactivation, the other is intended to comprise the mixture of the blood product and the photoactive compound. The system furthermore allows for removal of the photoactive compound and if necessary its photoproducts generated during irradiation.
  • French patent application FR 200506296 describes a blood bag system for the storage of platelet concentrates, which allows sampling of the platelet concentrates through an integrated sampling bag whereby detections of pathogens in the blood or the platelet concentrates are possible.
  • US 2001/0046450 A1 discloses a method and an apparatus for inactivating contaminants in blood products. The blood product is guided past a source of UV-C radiation whereby the flow of the blood product is controlled to receive irradiation doses of lower than 640 J/m2. The blood product is substantially free of non-enveloped viruses after the irradiation. The apparatus includes an emitter of type C ultraviolet radiation placed so as to emit type C radiation toward the blood product in a quartz tube or a tube made of polymer material which does not absorb type C radiation. The apparatus also includes a flow meter for controlling the flow rate of the blood product to be treated.
  • German patent application 10 2005 062 410.3, filed 23 Dec. 2005 by the present applicant as co-applicant, teaches a process for the reduction of pathogens and/or leucocytes in platelet concentrates using flexible UV-transparent blood bags, the contents of which is made of full reference for the present application. The flexible blood bags are irradiated while agitating the bag.
  • US 2003/0228564 discloses a method of inactivating pathogens in blood and blood components by adding riboflavin and nitric oxide in the blood or blood components and irradiating under agitation the blood or blood component with UV or visible light. The Sengewald bag used in the method is not designed to avoid dead areas during the irradiation.
  • OBJECT OF THE INVENTION
  • It is an object of the present invention to provide a blood bag system to carry out a procedure for effectively inactivating pathogens in platelet concentrates without adversely affecting the platelet concentrate. Pathogens like viruses, bacteria, spores, fungi, protozoa as well as leucocytes shall be inactivated to an extend to allow save storage of the platelet concentrates at room temperature and in liquid state for several days without impairing the therapeutic efficiency of the concentrates.
  • Another object of the present invention is to develop a disposable plastic bag system, comprising one or more bags for illuminating the PC and for the storage and transfusion of the platelet concentrate.
  • SUMMARY OF THE INVENTION
  • Surprisingly it was found that by use of the blood bag system according to the subject matter of the claim 1 and the independent process/method claim, and as further defined in the sub claims or hereinafter, effective inactivation of viruses, bacteria, protozoa, spores and reduction of leucocytes can be achieved without the addition of any pathogen inactivating substance.
  • It is further part of the present invention to optionally substitute part of the plasma contained in the PC by a platelet storage solution to form a suspended PC. In the suspended PC contained in the blood bag, at least 20 weight %, most preferred 70% of the plasma content of the platelet concentrates is exchanged against a platelet storage solution.
  • It is further part of the present invention that the platelet concentrate treated as described above can be stored for an extended time without impairment of the platelet quality.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The blood bag system comprises either one bag for irradiation with UV light and storage of a suspended PC, wherein the irradiation bag forms at the same time the storage bag, or comprises a first bag for irradiation (irradiation bag) with UV light and a second bag (storage bag) for storage wherein in each of the different blood bag systems the irradiated suspended PC can be stored for up to 10 clays without clinically significant reduction of the therapeutic quality.
  • According to a preferred embodiment the blood bag system according to the invention comprises a leucodepletion filter for leucodepletion of the inlet stream of non-irradiated PC. The leucodepletion filter for above purpose is preferably incorporated in the inlet tubing of the irradiation bag.
  • The irradiation bag is made from an UV-transparent plastic material. Suitable polymer materials are polyolefins and ethylene vinyl acetate (EVA), extruded or calendered to wall thicknesses of 0.8 mm or less, in particular about 0.5 mm or less. The plastic foils obtained can be sealed to form a bag. The irradiation bag has a substantially flat inside. In particular, the bag is made from material that has no adsorption maximum in the range of 200 to 270 nm. Thickness and quality of the EVA material after sterilization is such, that it shows minimal adsorption of UV-light. Particularly preferred are EVA polymers of low polymerisation degree and low crosslinking. The UV-Light adsorption may also be influenced by the acetylation degree of the EVA.
  • The volume capacity of the irradiation bag is at least 5 times and most preferred at least 10 times of the actual storage volume of PC/suspended PC stored in the bag.
  • The volume capacity of the irradiation bag is defined as maximum filling volume obtained by gravity flow of water into the bag at 1 m bight difference. The actual storage volume of PC is the volume, in which the PC is stored, which includes both plasma and platelet storage solution.
  • For example, the volume capacity of the irradiation bag is 5000 ml and the actual storage volume of PC is 500 ml. Therefore the ratio of volume capacity of the irradiation bag to PC volume is factor 10. Consequently, the irradiation bag is not completely filled with PC. The irradiation bag is filled at most 20% and preferably 1 to 10% and most preferred 1 to below 10% (each in Vol. %) of its capacity with biological fluid.
  • Therefore the irradiation bag after filling with PC is only a few millimetres thick, such as less than 5 mm. For example bags of a dimension of 19×38 cm filled with 200 to 300 ml of PC have a thickness of below 5 mm. It is preferred that the tubes entering into the bag have small diameters. Also to improve agitation and homogenous mixing of PC, the inside of the irradiation bag preferably comprises cut off or rounded corners. When viewed from the top, the inside of the irradiation bag have at least 4, preferably 5 or even 8 corners or forms a circle or oval when filled with suspended PC. So the inside of the irradiation bag has a round or oval volume when filled.
  • According to a preferred embodiment of the invention, the irradiation bag has one or more inlet tubes for filling the PC into the irradiation bag and optionally one or more outlet tubes for discharging the irradiated PC into the storage bag. The irradiation bag is further provided with means for preventing fluid access into the inlet and/or outlet tubes such that no dead area is formed inside the bag.
  • For example, it is advisable to have the inlet side of the bag clamped off or sealed off after filling of the bag with the PC to avoid dead areas of the irradiation bag. The sealing can be performed in such a manner, that the corner is cut off and therefore has a shape of a rounded corner or similar to a rounded corner.
  • In that case, the inlet tube is preferably located at one corner of the irradiation bag, between the two plastic foils forming the irradiation bag. When the inlet side of the bag is clamped off or sealed after filling, a sealed compartment is formed into which the inlet tube opens. The sealed compartment preferably does not contain PC and is separated from the main compartment of the bag containing the PC.
  • To facilitate the sealing of the corner of the bag, the irradiation bag comprises a partial seal extending from one edge of the bag to an adjacent edge thereto, thereby partially enclosing the opening of the inlet tube.
  • The outlet opening may preferably contain a clamp off part or break-off part, so that no PC can enter into the outlet tube. After irradiation the outlet part or break-off part is opened, so that the irradiated, pathogen inactivated PC can be transferred through the tube 3 into the storage bag (see FIG. 3 and FIG. 4).
  • At the bottom the bag may additionally have an area where a bag label or a lot number may be placed. Such area is not used for storing PC and is outside the area of irradiation since it is beneficial to irradiate the irradiation bag from both sides of the bag.
  • The storage bag may be made from PVC material comprising DEHP, citrate esters or Trioctyl trimellitate (TOTM) as plasticizer. However, according to a preferred embodiment the storage bag consists of the same UV-transparent plastic material as the irradiation bag.
  • It is important that the storage bag shows gas permeability, in particular oxygen and carbon dioxide permeability, and platelet compatibility, so that the PC can be stored for up to 10 days preferably under a slight agitation.
  • The bag system may be sterilized by standard techniques like steam or ethylene oxide treatment or by β-rays irradiation, so that the bags and tubes allow sterile preparations after pathogen reduction.
  • It was also found that optionally at least part of the plasma contained in the PC may be substituted by an aqueous salt solution to form a suspended PC, which is suitable for platelet storage. A preferred aqueous salt solution is SSP+ as marketed by MacoPharma. The plasma in the PC to be irradiated may be substituted by 50 to 95 weight %, preferably 70 to 80 weight % with SSP+.
  • However, other suitable platelet storage solutions may also be used, which replace the plasma for storage. Optimal storage of PC in storage bag is characterized by in vitro parameters like swirling, pH, osmotic stability and aggregation, as described in table 1. With the platelet storage solution UV-irradiation, mixing of the partially plasma exchanged PC by agitation of the irradiation bag and storage in the storage bag is optimal.
  • Results of pathogen reduction efficiency are described in the above mentioned co-pending German patent application No. 10 2005 062 410.3 by the present applicant and Forschungsgemeinschaft der DRK-Blutspendedienst e.V., filed 23 Dec. 2005 and are incorporated herein by reference.
  • UV-irradiation is ideally performed from both sides of the bag, preferably at the same time. UV-irradiation must be at least partially accompanied by agitation of the irradiation bag. Agitation must be such that a homogenous mixing of the PC is performed and at same time, during mixing of the PC, thicknesses of the irradiation bag must be such that the UV light penetrates through the PC.
  • In particular, the irradiation bag is agitated while irradiated by means of a steady agitation using an amplitude of from 0.2 to 8 cm in the x and the y direction of the plane, and a frequency of the amplitude from 10 to 200 Hz. In a preferred embodiment, x and y are the same and the path is circular,
  • Light of wavelengths in between 200 to 400 nm covering UV-A, UV-B and UV-C is used for irradiation. It was found, however, that the UV-light suited best for the procedure is UV-C-light with frequencies between 200 to 350 nm, in particular 200 to 270 nm.
  • The UV-C-light used may also contain components of UV-B and UV-A as well as visible light components. According to a preferred embodiment monochromatic UV-C-light, with an emission maximum of 254 nm is used.
  • The light dose for irradiation may be between 0.01 and 2 J/cm2, however, depending on the frequency range and filters used and the PC layer thickness in the illumination bag, other energies are possible. This also depends on whether the light has been generated by a quartz lamp, light emitting diodes (LEDs) or flash lights, e.g. by Eximer lamps.
  • DESCRIPTION OF THE FIGURES
  • The invention is illustrated by the figures without being limited to the embodiment depicted.
  • FIG. 1 shows a blood bag system according to the invention.
  • FIG. 2 shows a further embodiment of the blood bag system of FIG. 1 additionally comprising a leucocyte filter and a sampling bag.
  • FIG. 3 shows an embodiment, where details of the bag size and of the inlet and outlet tube of the irradiation bag are depicted.
  • FIG. 4 shows a different embodiment, wherein the irradiation bag and the storage bag form one bag.
  • FIG. 5 shows a different embodiment of the irradiation bag of the blood bag system.
  • The plastic double bag system shown in FIG. 1 comprises an inlet tube 1 connected to the irradiation bag 2 to sample the incoming stream of the processed PC comprising platelet storage solution. The irradiation bag 2 is connected through a second tube 3 to a storage bag 4, used for storage and administering the blood product to a patient in need for platelets. After irradiation of the PC in the irradiation bag 2 and transfer of its content to the storage bag 4 through the tube 3, the tube 3 is sealed off and thus the irradiation bag 2 is separated from the storage bag 4. The storage bag 4 comprises a port 6 for spikes and optionally an additional third tube 7, which may be used for sampling, under which circumstances the third tube 7 may be connected to a sampling bag 10.
  • A further embodiment of the blood bag system is schematically depicted in FIG. 2. Beside the elements described in FIG. 1, the blood bag system further comprises a leucocyte filter 8 included in the inlet tube 1. This leucocyte filter may be bypassed by a bypass tube 5 further allowing air venting of the irradiation bag 2.
  • The sampling bag 10 allows the early and late detection of contaminants in PC, as explained in the above mentioned FR 200506296. Briefly, at the time of the filling of the storage bag 4, a sample of PC is transferred into the sample bag 10. Before the storage of the PC, a first contamination test is performed on a first part of the sampled PC, the first part being taken from the sample bag 10 via a first outlet 11.
  • If no contamination is detected, the PC is stored. Before the transfusion of the PC to a patient, a second contamination test is performed on a second part of the sampled PC taken from the sample bag 10 via a second outlet 11.
  • The bags in the blood bag system as shown in FIGS. 1 and 2 further have clamps or break-off parts 13 to close or otherwise allow free flow of the platelet concentrate through the tubing.
  • FIG. 3 depicts a variation of the irradiation bag 2 of FIG. 1. In this figure, the inlet tube 1 is moved to the one corner of the bag, which does not show any corner cut-off inside the bag. Once the PC has been filled into the bag, this part may be sealed off along the line 16, which can be placed using a suitable heat seal or high frequency sealing system to result in cut-off corner of the bag. The reason to have the corner of the irradiation bag rounded or cut-off, is not to have dead areas during the agitation and irradiation steps described above.
  • This preferred embodiment shows also a break-off part 15, which closes the tube 3 and which might be opened after irradiation, thus allowing free flow of the irradiated PC through the tube 3 into the storage bag. This break-off part is constructed and placed into the bag such, that no dead areas do exist, in which PC is trapped and not agitated during the irradiation process. This break-off part may be substituted by any system suitable for closing and opening of bags, like ball valves, plugs or other systems.
  • The embodiment shown in FIG. 3 shows a bag having a square format, where the length and the height of the bag are almost the same. The inside forms an octagon. Bag 2 can also be constructed as a circular bag, containing in- and outlets.
  • Octagon type and circular top views of the inside boundaries have advantages on agitation by reducing possible dead ends even further, especially on circular or elliptic horizontal agitation. Therefore the bag (2) is suitable for illumination, storage and transfusion of PC.
  • For routine use tube 1 is sterilely docked to a PC source, obtainable from blood donations by apheresis or by a buffy-coat pool procedure. For connection purposes the inlet tube 1 may contain spike (14).
  • Bag 2+4 shown in FIG. 4 may be used as storage bag 2 and irradiation bag 4 at the same time. In addition to the features described for the embodiment of FIG. 3, additionally comprised is a closure 17 in form of a part which allows connection with spikes of transfusion sets.
  • Another example of the irradiation bag is illustrated in FIG. 5. The irradiation bag 2 is provided with an inlet tube 1 for filling the bag with PC/suspended PC and an outlet tube 3 for discharging the PC/suspended PC into a storage bag.
  • The irradiation bag 2 comprises a partial seal 17 extending from one edge of the bag to an adjacent edge thereof. When the seal is completed, for example by using a hand held sealer, the seal creates a first sealed compartment enclosing the opening of the inlet tube 1 and a second sealed compartment comprising the PC/suspended PC. This first sealed compartment prevents the PC contained in the second sealed compartment to enter the inlet tube 1. In that way, the bag does not contain any dead area, ensuring that all PC is agitated and irradiated during the inactivation process.
  • Moreover, as shown in FIGS. 3 to 5, the seal 16,17 enclosing the inlet tube 1 at one edge of the irradiation bag 2 is symmetrical to at least another edge, thereby providing a symmetrical irradiation bag. This particular shape improves the agitation of the content of the bag.
  • Advantageously, the irradiation bag also comprises an outlet tube provided with a plug 18, ensuring that no PC/suspended PC enters the outlet tube. For discharging the PC into the storage bag, the plug 18 is simply removed from the outlet tube 3 by pressing manually the outlet tube to expel the plug 18 into the bag.
  • It is apparent to the skilled reader that the blood bag system and the method described herein and in particular with reference to FIG. 1 to FIG. 5 can as well be applied to reduce pathogens in other biological fluids such as platelet lysates, stem cell suspensions, tissue culturing media, plasma, plasma and proteins solutions. For such applications the reference to PC or suspended PC in this application may be exchanged against any one of above biological fluids. Furthermore the term “blood bag system” itself is not intended to limit the bag or the method disclosed herein to a use in connection with biological fluids that are derived from blood only. Except that the suspended PC is exchanged against the other biological fluids all features described in more detail in the general part hereinbefore are applicable as well.
  • For example it should be noted that the procedure and bag system as described herein and in particular with reference to any of the claims can be used for pathogen reduction of plasma alone without the presence of PC. Therefore therapeutic quantities of human plasma and plasma protein solutions (such as from 100-350 ml, and up to 700 ml) can also be pathogen reduced using UV-light and the above mentioned procedure.
  • Experimental Part
  • A preferred bag system and procedure uses a first bag with the size of an irradiation surface of 19×38 cm, consisting of a flexible EVA-sheeting with 0.25 mm thickness, with min. UV-adsorption characteristics. The irradiation bag is filled with 300 ml of suspended PC with 4×1011 platelets, leukodepleted to less than 106 residual leucocytes per PC, in plasma, where 70 weight % of the plasma has been replaced by SSP+ by MacoPharma as Storage Solution for PC. The SSP+ solution comprises (in g/l):
      • Na-Citrate 2H2O: 3.18; Na-Acetate 3H2O: 4.42; Na-Phosphate 2H2O: 1.05; Di-Na-Phosphate: 3.05; KCl: 0.37; MgCl2 6H2O: 0.3; NaCl: 4.05 and Water to 1000 ml.
  • The PC in bag was irradiated horizontally for a period of 2 min. from both sides at the same time, using an UVC irradiation machine with quartz tubes, VIS-light filter, under orbital agitation of the bag at 100 Hz with amplitude of 2 cm in one axis and 4 cm in the other axis at room temperature. We found that orbital mixing is preferred over circular mixing. Under these conditions a homogeneous mixing of the PC is reached. At the same time the fluid shows a profile with high and very low liquid thickness in the flexible bag with a distribution of moving and standing waves in the bag.
  • After the irradiation step, the treated PC was transferred into the second bag, which consisted of a 1000 to 1500 ml bag of EVA (alternatively PVC/TOTM sheeting may be used), allowing sufficient gas exchange for CO2) and O2 during up to 10 days storage, under slight horizontal agitation at room temperature.
  • In the practical example an irradiation and a storage bag made from EVA was used and the irradiation bag was irradiated with UV-C radiation at a rate of 0.6 J/cm2 under constant agitation.
  • The results of the procedure applied to PC in the blood bag system according to the invention are summarized in Table 1. These results demonstrate that the PC quality does not change significantly by the treatment or after storage for several days.
  • This inactivation method does not require the addition of an inactivating substance, such as photosensitive or photodynamic active substance, in the biological fluid to be treated. No further step, e.g. removal of the inactivating substance, is necessary. It is acknowledged that UVC directly activates nucleotides of viruses and bacteria, without the need of exogenous substances.
  • TABLE I
    Platelet parameters during storage with and without treatment
    at 100 Hz, under orbital agitation and UVC-irradiation in
    SSP+ platelet storage solution
    Day
    6* Day 8*
    Before (treatment) (treatment)
    treatment Without with without With
    Platelets 11.2 9.98 10.4 10.8 10.5
    (108/ml)
    pH 7.03 7.14 7.13 7.19 7.10
    HSR (%) 54 58 62 61 61
    Swirling 5 5 5 5 5
    (grade)
    Aggreg. (%) 87 87 86 82 86
    HSR: Hypotonic Shock Reaction
    Swirling: Visual inspection, 0 no swirling, 5 max. swirling
    Aggregation: Aggregation of platelets, collagen-induced
    *storage at room temperature

Claims (32)

1. A blood bag system comprising a biological fluid such as a platelet concentrate and further comprising:
a storage bag (4) made from a plastic material,
an irradiation bag (2) made from a flexible plastic material substantially transparent to UV irradiation and having a volume capacity of at least 10 times of the volume of the biological fluid contained in the irradiation bag and,
the storage bag (4) and the irradiation bag (2) being one and the same bag or at least two different but interconnectable bags.
2. The blood bag system according to claim 1, wherein the irradiation bag comprises one or more inlet tubes (1) and/or outlet tubes (3) and is provided with means for preventing the biological fluid contained in the irradiation bag (2) and to be treated to enter into and/or to access the inlet and/or outlet tubes to avoid dead areas formed inside the irradiation bag (2) in or around the tubes.
3. The blood bag system according to claim 1, wherein the inlet tubes (1) and/or outlet tubes (3) comprise at least one clamp-off part, plug (18) or break-off part (15) as a closing for the tube end extending into the irradiation bag, preferably located at the inner end of the tube, in particular the outlet tube (3), in which case the closing is openable.
4. The blood bag system according to claim 1, wherein the irradiation bag (2) comprises a sealing (17) providing a compartment containing the biological fluid to be treated and a compartment separated therefrom comprising the inner end(s) of the one or more inlet tubes (1) and/or outlet tubes (3), the sealing preferably being located at one corner of the bag.
5. The blood bag system according to claim 4, wherein the separated compartment comprises one or more inlet tubes only.
6. The blood bag system according to claim 1, wherein the biological fluid contained in the irradiation bag does not contain a photosensitizer having an absorption maximum in the range of 200 to 270 nm, in particular 200 to 350 nm, and preferably is free of any pathogen inactivating substance added to the biological fluid and free of any photosensitizer.
7. The blood bag system according to claim 1, wherein the biological fluid is a suspended platelet concentrate comprising plasma wherein at least 20 weight % of the plasma contained in the platelet concentrate is exchanged against a platelet storage solution to form a suspended platelet concentrate and the platelet storage solution comprises water and soluble salts.
8. The blood bag system according to claim 7, wherein the greater 50 weight %, preferably greater 70 weight %, of the plasma is exchanged against a platelet storage solution.
9. The blood bag system according to claim 7, wherein the platelet storage solution contains at least one of the following salts: citrate, phosphate and/or acetate.
10. The blood bag system according to claim 1, wherein the biological fluid comprises 0.2 to 2.5×109 platelets per ml biological fluid contained in the blood bag system.
11. The blood bag system according to claim 1, wherein
the irradiation bag (2) is different from the storage bag (4), wherein the storage bag (4) has optionally half or less of the volume capacity of the irradiation bag (2) and
the blood bag system comprises a tubing (3) for interconnecting the irradiation bag (2) and the storage bag (4), optionally detachable.
12. The blood bag system according to claim 11, wherein the storage bag (4) has 20% or less of the volume capacity of the irradiation bag (2).
13. The blood bag system according to claim 11, wherein the irradiation bag (2) and the storage bag (4) consist of the same plastic material.
14. The blood bag system according to claim 11, wherein the irradiation bag (2) and the storage bag (4) consist of different plastic materials.
15. The blood bag system according to claim 1, wherein at least the irradiation bag (2) consists of EVA.
16. The blood bag system according to claim 1, wherein the storage bag (4) is permeable for at least one gas, selected from the group consisting of air, oxygen and carbon dioxide.
17. The blood bag system according to claim 1, wherein the irradiation bag (2) is made from material that has no adsorption maximum in the range of 200 to 350 nm, preferably 250 to 300 nm.
18. The blood bag system according to claim 1, wherein the irradiation bag (2) has a flat inside, the inside having boundaries when viewed from the top that have at least 4, preferably 6 or 8 corners or form a circle or oval when filled with the biological fluid.
19. The blood bag system according to claim 1, further comprising a leucocyte filter (8) optionally as part of the inlet tube (3) for the irradiation bag (2).
20. A method for manufacturing a blood bag system according to claim 1, comprising the following steps:
providing an irradiation bag (2) made from a flexible plastic material substantially transparent to UV irradiation and comprising at least one inlet tube (1) preferably located at one corner of the bag (2),
introducing the biological fluid into the irradiation bag (2) via the inlet tube so that the irradiation bag (2) is less then 20 vol % filled, preferably filled from less than 10 vol % to 1 vol %,
sealing the bag thereby creating a first sealed compartment into which the inlet tube (1) opens and a second sealed compartment comprising the biological fluid.
21. A process for the inactivation of pathogens and the reduction of leucocytes in platelet concentrates in a blood bag system according to claim 1, comprising the following steps:
obtaining a platelet concentrate from human blood donation by apheresis techniques or by buffy-coat pooling techniques,
inserting the platelet concentrate into the irradiation bag (2) so that the irradiation bag is less then 20 vol % filled, preferably filled from 10 to 1 vol %,
irradiating the irradiation bag comprising platelet concentrate with an irradiation source comprising UV-C light of a wavelength of 200 to 270 nm while keeping the irradiation bag under agitation and
inserting the irradiated platelet concentrate into the storage bag (4) for storage or remaining the irradiated platelet concentrate in the irradiation bag for storage in the irradiation bag.
22. A process according to claim 21, comprising the following further step
exchanging at least 20 weight %, preferably at least 50 weight %, of the plasma contained in the platelet concentrate against a platelet storage solution to form a suspended platelet concentrate, the platelet storage solution comprises water and one or more soluble salts before exposing the platelet concentrate to UV irradiation.
23. The process according to claim 21, wherein the UV-irradiation is generated by a quartz lamp, a LED- and/or flash-light lamp.
24. The process according to claim 21, wherein the irradiation bag is placed upon a stiff sheet, optionally made from glass/quartz material, while irradiated and agitated.
25. The process according to claim 21, wherein the filled irradiation bag has an average thickness of less than 5 mm, preferably less than 2.5 mm, when irradiated.
26. The process according to claim 21, wherein the irradiation bag is agitated to homogeneously mix the fluid content and/or to obtain a fluid profile with wave like surface areas in the irradiation bag comprising a multiplicity of moving or standing troughs and crests, wherein the troughs at their lowest spot preferably have average film thickness of less than 2.5 mm.
27. The process according to claim 21, wherein the light dose for irradiation of the irradiation bag is between 0.01 and 2 J/cm2.
28. The process according to claim 21, wherein the platelet concentrate/suspended platelet concentrate is stored at room temperature, preferably for at least 8 days.
29. The process according to claim 21, wherein the stored platelet concentrates/suspended platelet concentrates are stored at room temperature under slight agitation, preferably for at least 8 days.
30. The process according to claim 21, wherein the irradiation bag is agitated while irradiated by means of a steady agitation using an amplitude of from 0.2 to 8 cm in the x and the y direction of the plane, wherein x and y are preferably the same, and a frequency of the amplitude from 10 to 200 Hz.
31. The process according to claim 21, wherein the platelet concentrate contained in the irradiation bag does not contain a photosensitizer having an absorption maximum in the range of in particular 200 to 350 nm, more particularly 200 to 270 nm, and preferably if free of any pathogen inactivating substance added to the biological fluid or any photosensitizer.
32. The process according to claim 31, wherein the irradiation bag is irradiated and agitated while stretched out flat and horizontal on a substantially plane sheet without any clamping of the upper layer of the irradiation bag thus allowing the upper layer to freely move in reaction to the agitation of the bag.
US12/311,033 2006-09-19 2007-06-22 Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system Abandoned US20100133203A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06019589A EP1902740A1 (en) 2006-09-19 2006-09-19 Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system
EP06019589.8 2006-09-19
PCT/EP2007/005538 WO2008034476A1 (en) 2006-09-19 2007-06-22 Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/005538 A-371-Of-International WO2008034476A1 (en) 2006-09-19 2007-06-22 Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/450,375 Division US10058646B2 (en) 2006-09-19 2017-03-06 Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system

Publications (1)

Publication Number Publication Date
US20100133203A1 true US20100133203A1 (en) 2010-06-03

Family

ID=37450817

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/311,033 Abandoned US20100133203A1 (en) 2006-09-19 2007-06-22 Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system
US15/450,375 Active 2027-07-10 US10058646B2 (en) 2006-09-19 2017-03-06 Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/450,375 Active 2027-07-10 US10058646B2 (en) 2006-09-19 2017-03-06 Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system

Country Status (10)

Country Link
US (2) US20100133203A1 (en)
EP (2) EP1902740A1 (en)
JP (2) JP5868570B2 (en)
AU (1) AU2007299317B2 (en)
CA (1) CA2663443C (en)
DK (1) DK2077867T3 (en)
ES (1) ES2550638T3 (en)
PL (1) PL2077867T3 (en)
PT (1) PT2077867E (en)
WO (1) WO2008034476A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164233A1 (en) * 2005-12-23 2007-07-19 Harald Mohr Method for the inactivation of pathogens in donor blood, blood plasma or erythrocyte concentrates in flexible containers under agitation
US20090155121A1 (en) * 2005-12-23 2009-06-18 Harald Mohr Method for Irradiating Thrombocyte Concentrates in Flexible Containers With Ultra-Violet Light
US20100178200A1 (en) * 2007-06-22 2010-07-15 Maco Pharma S.A. Irradiation apparatus for inactivating pathogens and/or leukocytes in a biological fluid and process
USD627527S1 (en) * 2008-07-08 2010-11-16 Radio Systems Corporation Pet bed heating pad
US20110262300A1 (en) * 2008-10-24 2011-10-27 Holger Rahn Method and arrangement for sterilization, in particular for the sterilization of an adsorber
US20130105571A1 (en) * 2010-06-22 2013-05-02 Terumo Bct, Inc. Cassette, Workstation and Method For Marking Containers Containing A Liquid
US20130281923A1 (en) * 2012-04-18 2013-10-24 Ditta Paolo Giuseppe Gobbi Frattini Bag for liquid solutions mixable with active substances available in a separate form, in particular in powder or gel, for forming liquid medicinal or liquid substances that are administrable to patients through internal instillation
US9339025B2 (en) 2010-08-25 2016-05-17 New Health Sciences, Inc. Method for enhancing red blood cell quality and survival during storage
CN106492245A (en) * 2016-12-23 2017-03-15 中国人民解放军南京军区南京总医院 Bloodborne pathogens inactivating device
US9801784B2 (en) 2015-04-23 2017-10-31 New Health Sciences, Inc. Anaerobic blood storage containers
US9844615B2 (en) 2009-10-12 2017-12-19 New Health Sciences, Inc. System for extended storage of red blood cells and methods of use
US9877476B2 (en) 2013-02-28 2018-01-30 New Health Sciences, Inc. Gas depletion and gas addition devices for blood treatment
US9968718B2 (en) 2011-03-28 2018-05-15 New Health Sciences, Inc. Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly
US10058091B2 (en) 2015-03-10 2018-08-28 New Health Sciences, Inc. Oxygen reduction disposable kits, devices and methods of use thereof
US10065134B2 (en) 2010-05-05 2018-09-04 New Health Sciences, Inc. Integrated leukocyte, oxygen and/or CO2 depletion, and plasma separation filter device
US20180250429A1 (en) * 2012-11-05 2018-09-06 Gail Rock Device and method for sterilization of instruments and surfaces
US10136635B2 (en) 2010-05-05 2018-11-27 New Health Sciences, Inc. Irradiation of red blood cells and anaerobic storage
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
US10583192B2 (en) 2016-05-27 2020-03-10 New Health Sciences, Inc. Anaerobic blood storage and pathogen inactivation method
CN111544296A (en) * 2020-06-18 2020-08-18 四川省人民医院 Blood products light energy keeps bag
US20210115403A1 (en) * 2018-02-15 2021-04-22 Maco Pharma Method for preparing an irradiated platelet lysate
US11013771B2 (en) 2015-05-18 2021-05-25 Hemanext Inc. Methods for the storage of whole blood, and compositions thereof
US11247216B2 (en) * 2015-09-14 2022-02-15 Fenwal, Inc. Methods for sterilely connecting a container to a blood processing set
US11284616B2 (en) 2010-05-05 2022-03-29 Hemanext Inc. Irradiation of red blood cells and anaerobic storage
WO2023130850A1 (en) * 2022-01-10 2023-07-13 南京双威生物医学科技有限公司 Plasma pathogen inactivation treatment method based on riboflavin photochemical method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1902740A1 (en) 2006-09-19 2008-03-26 Maco Pharma S.A. Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system
DE102008051123A1 (en) 2008-10-09 2010-04-15 Fresenius Kabi Deutschland Gmbh A pouch, bag set, method and treatment device for treating at least one blood component
WO2012067918A1 (en) * 2010-11-17 2012-05-24 Kci Licensing, Inc. Reduced-pressure systems and methods employing an ultraviolet light source for reducing bioburden
KR20140033015A (en) * 2011-03-16 2014-03-17 메이오 파운데이션 포 메디칼 에쥬케이션 앤드 리써치 Methods and materials for prolonging useful storage of red blood cell preparations and platelet preparations
CN104507441B (en) * 2012-07-12 2018-01-12 泰尔茂比司特公司 Mixed type blood constituent reservoir bag and the method for manufacturing this bag
US9782707B2 (en) 2014-03-24 2017-10-10 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US9968738B2 (en) 2014-03-24 2018-05-15 Fenwal, Inc. Biological fluid filters with molded frame and methods for making such filters
US10159778B2 (en) 2014-03-24 2018-12-25 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US9796166B2 (en) 2014-03-24 2017-10-24 Fenwal, Inc. Flexible biological fluid filters
US10376627B2 (en) 2014-03-24 2019-08-13 Fenwal, Inc. Flexible biological fluid filters
FR3112985B1 (en) 2020-08-03 2023-11-17 Maco Pharma Sa Device for welding a pocket
CN113459593B (en) * 2021-07-29 2022-11-22 山东中保康医疗器具有限公司 Inflating method for producing disposable white blood cell removing plastic blood bag
CN114366840B (en) * 2022-01-12 2023-06-09 山东中保康医疗器具有限公司 Virus inactivating device based on blood bag management
FR3133135A1 (en) 2022-03-04 2023-09-08 Maco Pharma Bag system for electromagnetic irradiation treatment of a biological fluid
FR3133134A1 (en) 2022-03-04 2023-09-08 Maco Pharma Bag system for electromagnetic irradiation treatment of a biological fluid
FR3138040A1 (en) 2022-07-21 2024-01-26 Maco Pharma Apparatus and method for irradiating a biological fluid

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US155121A (en) * 1874-09-15 Improvement in shaft-couplings
US164233A (en) * 1875-06-08 Improvement in roofing compositions
US178200A (en) * 1876-05-30 Improvement in grain separators
US202395A (en) * 1878-04-16 Improvement in shaft-journals and boxes therefor
US722676A (en) * 1901-01-04 1903-03-17 Peete B Clarke Compensating valve for hydraulic rams.
US4469227A (en) * 1983-08-17 1984-09-04 Clifford Faust Package for cryogenically frozen liquids
US4586928A (en) * 1984-10-09 1986-05-06 Miles Laboratories, Inc. Pivoting frangible valve for plastic bags
US4630448A (en) * 1985-10-25 1986-12-23 Baxter Travenol Laboratories, Inc. Container for storing solid living tissue portions
US4952818A (en) * 1989-05-17 1990-08-28 International Business Machines Corporation Transmission line driver circuits
US4952812A (en) * 1986-08-26 1990-08-28 Baxter International Inc. Irradiation of blood products
US5030200A (en) * 1987-06-25 1991-07-09 Baylor Research Foundation Method for eradicating infectious biological contaminants in body tissues
US5625079A (en) * 1993-06-28 1997-04-29 Cerus Corporation Synthesizing psoralen compounds useful as intermediates
US6139878A (en) * 1998-04-27 2000-10-31 Aventis Behring, Llc Method for preparing a diafiltered stabilized blood product
US6268120B1 (en) * 1999-10-19 2001-07-31 Gambro, Inc. Isoalloxazine derivatives to neutralize biological contaminants
US20010046450A1 (en) * 1995-07-14 2001-11-29 Ruth Laub Method and apparatus for inactivating contaminants in blood products
US20020043051A1 (en) * 2000-10-17 2002-04-18 Gambro, Inc Container and method of sealing
US20020138066A1 (en) * 2001-03-23 2002-09-26 Gambro, Inc. Multiple compartment bag with openable closure assembly
US20030064001A1 (en) * 2001-05-17 2003-04-03 Fries William M. System for the decontamination of fluid products using light
US20030228564A1 (en) * 2001-05-30 2003-12-11 Edrich Richard Alan Nitric oxide in a pathogen inactivation process
US6686480B2 (en) * 1993-06-28 2004-02-03 Cerus Corporation Compounds for the photodecontamination of pathogens in blood
US20040186410A1 (en) * 2003-03-17 2004-09-23 Davidner Alan A. Apparatus and method for down-regulating immune system mediators in blood
US7025877B1 (en) * 1999-06-03 2006-04-11 Baxter International Inc. Processing set for processing and treating a biological fluid
US20090187117A1 (en) * 2004-01-16 2009-07-23 Terumo Kabushiki Kaisha Packing material and medical instrument set package

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8807380D0 (en) 1988-03-29 1988-05-05 Gunn A Blood processing apparatus
JP3182145B2 (en) * 1990-04-16 2001-07-03 日本赤十字社 Platelet preservation solution
JPH05131018A (en) * 1991-11-11 1993-05-28 Terumo Corp Bag connection body and manufacture thereof
CA2176258C (en) 1993-11-10 2001-12-25 George D. Cimino Device and method for photoactivation
JP3282952B2 (en) * 1995-10-16 2002-05-20 テルモ株式会社 Bag pressurizing device
DE69626853T2 (en) * 1995-12-04 2004-02-19 Puget Sound Blood Center And Programm, Seattle Preparations containing non-immunogenic platelets and red blood cells
DE29801590U1 (en) * 1998-01-30 1998-04-16 Maco Pharma Int Gmbh Blood bag system for virus inactivation of blood, blood components and plasma
EP1002512A3 (en) * 1998-11-19 2001-01-24 Bracco International B.V. Flexible container for the containment and delivery of fluids
US7445756B2 (en) * 1999-06-03 2008-11-04 Fenwal, Inc. Fluid processing sets and organizers for the same
US7094378B1 (en) 2000-06-15 2006-08-22 Gambro, Inc. Method and apparatus for inactivation of biological contaminants using photosensitizers
US6596230B1 (en) 2000-01-28 2003-07-22 Baxter International Inc. Device and method for pathogen inactivation of therapeutic fluids with sterilizing radiation
US6576201B1 (en) 2000-01-28 2003-06-10 Baxter International Inc. Device and method for pathogen inactivation of therapeutic fluids with sterilizing radiation
AU2001296309A1 (en) 2000-09-27 2002-04-08 Gambro, Inc Inactivation of contaminants using photosensitizers and pulsed light
US20030127603A1 (en) 2001-05-15 2003-07-10 Bernard Horowitz Apparatus for the inactivation of pathogens in protein-containing fluids and uses thereof
EP1429823A1 (en) 2001-09-27 2004-06-23 Gambro, Inc., Radio frequency or electromagnetic information systems and methods for use in extracorporeal blood processing
DE10152159A1 (en) 2001-10-25 2003-05-15 Aventis Behring Gmbh Process for protein-friendly cleaning of contaminated biological liquids
US7185087B2 (en) 2001-10-26 2007-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Maintenance of third party service's subscription information
DE60327166D1 (en) * 2002-02-01 2009-05-28 Caridianbct Biotechnologies Ll REDUCTION OF INFLUENCES IN BLOOD AND BLOOD PRODUCTS THROUGH THE USE OF PHOTOACTIVE SUBSTANCES AND IRRADIATION WITH LIGHT OF A TIGHT WAVELENGE RANGE
CA2481144A1 (en) 2002-04-12 2003-10-23 Throwleigh Technologies, L.L.C. Methods and apparatus for decontaminating fluids
AU2003228752B2 (en) 2002-04-26 2008-10-30 Terumo Bct Biotechnologies, Llc Apparatus and method for irradiating and mixing fluids in containers
JP2004041711A (en) * 2002-05-21 2004-02-12 Mariusu:Kk Blood storage bag
WO2004083081A2 (en) 2003-03-17 2004-09-30 Oshkosh Truck Corporation Rotatable and articulated material handling apparatus
JP4272477B2 (en) * 2003-08-08 2009-06-03 テルモ株式会社 Blood component collection device
US8296071B2 (en) 2004-03-15 2012-10-23 Terumo Bct Biotechnologies, Llc Methods for uniformly treating biological samples with electromagnetic radiation
FR2887335B1 (en) 2005-06-21 2007-08-10 Maco Pharma Sa METHOD FOR THE DETERMINATION OF PATHOGENIC CONTAMINATION IN A FLUID CONTAINING BLOOD PLAQUETTES
DE102005062634A1 (en) 2005-12-23 2007-06-28 Blutspendedienst der Landesverbände des Deutschen Roten Kreuzes Niedersachsen, Sachsen-Anhalt, Thüringen, Oldenburg und Bremen gGmbH Method for inactivation of pathogens, e.g. bacteria and viruses in donor blood, blood plasma and erythrocyte concentrations, involves filling exposure bag with supplement to less than thirty percent volume of maximum volume of exposure bag
DE102005062410A1 (en) 2005-12-23 2007-08-09 Forschungsgemeinschaft Der Drk-Blutspendedienste E.V. Method for irradiating platelet concentrates in flexible containers with ultraviolet light
EP1902740A1 (en) 2006-09-19 2008-03-26 Maco Pharma S.A. Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system
EP2008669A1 (en) 2007-06-22 2008-12-31 Maco Pharma S.A. Irradiation apparatus for inactivating pathogens and/or leukocytes in a biological fluid and process

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US164233A (en) * 1875-06-08 Improvement in roofing compositions
US178200A (en) * 1876-05-30 Improvement in grain separators
US202395A (en) * 1878-04-16 Improvement in shaft-journals and boxes therefor
US155121A (en) * 1874-09-15 Improvement in shaft-couplings
US722676A (en) * 1901-01-04 1903-03-17 Peete B Clarke Compensating valve for hydraulic rams.
US4469227A (en) * 1983-08-17 1984-09-04 Clifford Faust Package for cryogenically frozen liquids
US4586928A (en) * 1984-10-09 1986-05-06 Miles Laboratories, Inc. Pivoting frangible valve for plastic bags
US4630448A (en) * 1985-10-25 1986-12-23 Baxter Travenol Laboratories, Inc. Container for storing solid living tissue portions
US4952812A (en) * 1986-08-26 1990-08-28 Baxter International Inc. Irradiation of blood products
US5030200A (en) * 1987-06-25 1991-07-09 Baylor Research Foundation Method for eradicating infectious biological contaminants in body tissues
US4952818A (en) * 1989-05-17 1990-08-28 International Business Machines Corporation Transmission line driver circuits
US6686480B2 (en) * 1993-06-28 2004-02-03 Cerus Corporation Compounds for the photodecontamination of pathogens in blood
US5625079A (en) * 1993-06-28 1997-04-29 Cerus Corporation Synthesizing psoralen compounds useful as intermediates
US20010046450A1 (en) * 1995-07-14 2001-11-29 Ruth Laub Method and apparatus for inactivating contaminants in blood products
US6139878A (en) * 1998-04-27 2000-10-31 Aventis Behring, Llc Method for preparing a diafiltered stabilized blood product
US7025877B1 (en) * 1999-06-03 2006-04-11 Baxter International Inc. Processing set for processing and treating a biological fluid
US6268120B1 (en) * 1999-10-19 2001-07-31 Gambro, Inc. Isoalloxazine derivatives to neutralize biological contaminants
US20020043051A1 (en) * 2000-10-17 2002-04-18 Gambro, Inc Container and method of sealing
US20020138066A1 (en) * 2001-03-23 2002-09-26 Gambro, Inc. Multiple compartment bag with openable closure assembly
US20030064001A1 (en) * 2001-05-17 2003-04-03 Fries William M. System for the decontamination of fluid products using light
US20030228564A1 (en) * 2001-05-30 2003-12-11 Edrich Richard Alan Nitric oxide in a pathogen inactivation process
US20040186410A1 (en) * 2003-03-17 2004-09-23 Davidner Alan A. Apparatus and method for down-regulating immune system mediators in blood
US20090187117A1 (en) * 2004-01-16 2009-07-23 Terumo Kabushiki Kaisha Packing material and medical instrument set package

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155121A1 (en) * 2005-12-23 2009-06-18 Harald Mohr Method for Irradiating Thrombocyte Concentrates in Flexible Containers With Ultra-Violet Light
US8164073B2 (en) 2005-12-23 2012-04-24 Harald Mohr Method for the inactivation of pathogens in donor blood, blood plasma or erythrocyte concentrates in flexible containers under agitation
US8173066B2 (en) 2005-12-23 2012-05-08 Forschungsgemeinschaft Der Drk Blutspendedienste E.V. Method for irradiating thrombocyte concentrates in flexible containers with ultra-violet light
US20070164233A1 (en) * 2005-12-23 2007-07-19 Harald Mohr Method for the inactivation of pathogens in donor blood, blood plasma or erythrocyte concentrates in flexible containers under agitation
US8525128B2 (en) 2005-12-23 2013-09-03 Blutspendedienst Der Landesverbande Des Deutschen Roten Kreuzes Niedersachsen, Sachsen-Anhalt, Thuringen, Oldenburg Und Bremen G.G.M.B.H. Method for the inactivation of pathogens in donor blood, blood plasma or erythrocyte concentrates in flexible containers under agitation
US8778263B2 (en) 2007-06-22 2014-07-15 Maco Pharma S.A. Irradiation apparatus for inactivating pathogens and/or leukocytes in a biological fluid and process
US20100178200A1 (en) * 2007-06-22 2010-07-15 Maco Pharma S.A. Irradiation apparatus for inactivating pathogens and/or leukocytes in a biological fluid and process
US9320817B2 (en) 2007-06-22 2016-04-26 Maco Pharma S.A. Irradiation apparatus for inactivating pathogens and/or leukocytes in a biological fluid and process
USD627527S1 (en) * 2008-07-08 2010-11-16 Radio Systems Corporation Pet bed heating pad
US20110262300A1 (en) * 2008-10-24 2011-10-27 Holger Rahn Method and arrangement for sterilization, in particular for the sterilization of an adsorber
US9011765B2 (en) * 2008-10-24 2015-04-21 Fresenius Medical Care Deutschland Gmbh Method and arrangement for sterilization, in particular for the sterilization of an adsorber
US10603417B2 (en) 2009-10-12 2020-03-31 Hemanext Inc. System for extended storage of red blood cells and methods of use
US11433164B2 (en) 2009-10-12 2022-09-06 Hemanext Inc. System for extended storage of red blood cells and methods of use
US9844615B2 (en) 2009-10-12 2017-12-19 New Health Sciences, Inc. System for extended storage of red blood cells and methods of use
US11284616B2 (en) 2010-05-05 2022-03-29 Hemanext Inc. Irradiation of red blood cells and anaerobic storage
US10136635B2 (en) 2010-05-05 2018-11-27 New Health Sciences, Inc. Irradiation of red blood cells and anaerobic storage
US10065134B2 (en) 2010-05-05 2018-09-04 New Health Sciences, Inc. Integrated leukocyte, oxygen and/or CO2 depletion, and plasma separation filter device
US20130105571A1 (en) * 2010-06-22 2013-05-02 Terumo Bct, Inc. Cassette, Workstation and Method For Marking Containers Containing A Liquid
US8800881B2 (en) * 2010-06-22 2014-08-12 Terumo Bct, Inc. Cassette, workstation and method for marking containers containing a liquid
AU2011269055B2 (en) * 2010-06-22 2014-07-31 Terumo Bct, Inc. Cassette, workstation and method for marking containers containing a liquid
US9339025B2 (en) 2010-08-25 2016-05-17 New Health Sciences, Inc. Method for enhancing red blood cell quality and survival during storage
US10251387B2 (en) 2010-08-25 2019-04-09 New Health Sciences, Inc. Method for enhancing red blood cell quality and survival during storage
US9968718B2 (en) 2011-03-28 2018-05-15 New Health Sciences, Inc. Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly
US8894609B2 (en) * 2012-04-18 2014-11-25 Ditta Paola Giuseppe Gobbi Frattini Bag for mixable liquid solutions
US20130281923A1 (en) * 2012-04-18 2013-10-24 Ditta Paolo Giuseppe Gobbi Frattini Bag for liquid solutions mixable with active substances available in a separate form, in particular in powder or gel, for forming liquid medicinal or liquid substances that are administrable to patients through internal instillation
US11426479B2 (en) * 2012-11-05 2022-08-30 Gail Rock Device and method for sterilization of instruments and surfaces
US20180250429A1 (en) * 2012-11-05 2018-09-06 Gail Rock Device and method for sterilization of instruments and surfaces
US9877476B2 (en) 2013-02-28 2018-01-30 New Health Sciences, Inc. Gas depletion and gas addition devices for blood treatment
US10687526B2 (en) 2013-02-28 2020-06-23 Hemanext Inc. Gas depletion and gas addition devices for blood treatment
US10058091B2 (en) 2015-03-10 2018-08-28 New Health Sciences, Inc. Oxygen reduction disposable kits, devices and methods of use thereof
US11638421B2 (en) 2015-03-10 2023-05-02 Hemanext Inc. Oxygen reduction disposable kits, devices and methods of use thereof
US11375709B2 (en) 2015-03-10 2022-07-05 Hemanext Inc. Oxygen reduction disposable kits, devices and methods of use thereof
US11350626B2 (en) 2015-03-10 2022-06-07 Hemanext Inc. Oxygen reduction disposable kits, devices and methods of use thereof (ORDKit)
US10849824B2 (en) 2015-04-23 2020-12-01 Hemanext Inc. Anaerobic blood storage containers
US9801784B2 (en) 2015-04-23 2017-10-31 New Health Sciences, Inc. Anaerobic blood storage containers
US11013771B2 (en) 2015-05-18 2021-05-25 Hemanext Inc. Methods for the storage of whole blood, and compositions thereof
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
US11247216B2 (en) * 2015-09-14 2022-02-15 Fenwal, Inc. Methods for sterilely connecting a container to a blood processing set
US10583192B2 (en) 2016-05-27 2020-03-10 New Health Sciences, Inc. Anaerobic blood storage and pathogen inactivation method
US11147876B2 (en) 2016-05-27 2021-10-19 Hemanext Inc. Anaerobic blood storage and pathogen inactivation method
US11911471B2 (en) 2016-05-27 2024-02-27 Hemanext Inc. Anaerobic blood storage and pathogen inactivation method
CN106492245A (en) * 2016-12-23 2017-03-15 中国人民解放军南京军区南京总医院 Bloodborne pathogens inactivating device
US20210115403A1 (en) * 2018-02-15 2021-04-22 Maco Pharma Method for preparing an irradiated platelet lysate
CN111544296A (en) * 2020-06-18 2020-08-18 四川省人民医院 Blood products light energy keeps bag
WO2023130850A1 (en) * 2022-01-10 2023-07-13 南京双威生物医学科技有限公司 Plasma pathogen inactivation treatment method based on riboflavin photochemical method

Also Published As

Publication number Publication date
AU2007299317A1 (en) 2008-03-27
EP2077867B1 (en) 2015-08-12
CA2663443C (en) 2015-01-20
JP2016027899A (en) 2016-02-25
CA2663443A1 (en) 2008-03-27
EP1902740A1 (en) 2008-03-26
AU2007299317B2 (en) 2013-09-12
EP2077867A1 (en) 2009-07-15
WO2008034476A1 (en) 2008-03-27
US10058646B2 (en) 2018-08-28
JP5868570B2 (en) 2016-02-24
JP2010503501A (en) 2010-02-04
PL2077867T3 (en) 2016-01-29
ES2550638T3 (en) 2015-11-11
PT2077867E (en) 2015-11-17
US20170232163A1 (en) 2017-08-17
DK2077867T3 (en) 2015-10-19

Similar Documents

Publication Publication Date Title
US10058646B2 (en) Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system
US9320817B2 (en) Irradiation apparatus for inactivating pathogens and/or leukocytes in a biological fluid and process
ES2598055T3 (en) Device for aseptic cell expansion
RU2466742C2 (en) Method for pathogen inactivation in donor blood, blood plasma or concentrated erythorocytes in flexible containers by agitation
JP7148499B2 (en) Anaerobic blood storage and pathogen inactivation methods
MX2008008240A (en) Method for irradiating thrombocyte concentrates in flexible containers with ultra-violet light.
JPH0547222B2 (en)
CN114366831A (en) Plasma pathogen inactivation treatment method based on riboflavin photochemical method
CN114867348A (en) Hypoxic blood storage and pathogen inactivation methods
JPH05132424A (en) Ultraviolet irradiation of blood preparation containing erythrocyte

Legal Events

Date Code Title Description
AS Assignment

Owner name: MACO PHARMA S.A.,FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALKER, WOLFRAM HUBERT;TOLKSDORF, FRANK;VERPOORT, THIERRY;AND OTHERS;REEL/FRAME:023969/0794

Effective date: 20100209

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION