US3522811A - Implantable nerve stimulator and method of use - Google Patents

Implantable nerve stimulator and method of use Download PDF

Info

Publication number
US3522811A
US3522811A US800044A US3522811DA US3522811A US 3522811 A US3522811 A US 3522811A US 800044 A US800044 A US 800044A US 3522811D A US3522811D A US 3522811DA US 3522811 A US3522811 A US 3522811A
Authority
US
United States
Prior art keywords
nerve
electrodes
electrode
transistor
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US800044A
Inventor
Seymour I Schwartz
Robert C Wingrove
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Application granted granted Critical
Publication of US3522811A publication Critical patent/US3522811A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators

Definitions

  • An apparatus for stimulating the carotid sinus nerve being entirely implantable in an animal, having a battery powered timed pulse producing circuit, a pair of electrodes adapted to be atraumatically connected to spaced points on the exterior surface of the nerve to be stimulated, and capacitive coupling between the electrodes and the pulse producing circuit to provide a substantially zero net DC current flow through the nerve.
  • This invention relates to a method and means for electrically stimulating the carotid sinus nerve to control blood pres sure in hypertensive persons, and more particularly to such means comprising an implantable stimulator atraumatically connected directly to the carotid sinus nerve to supplement carotid sinus nerve impulses with artificial electrical impulses which will be carried to the vasomotor center to control systemic blood pressure.
  • an implantable stimulator atraumatically connected directly to the carotid sinus nerve to supplement carotid sinus nerve impulses with artificial electrical impulses which will be carried to the vasomotor center to control systemic blood pressure.
  • the word atraumatic has its normal meaning of not inflicting or causing damage or injury.
  • the carotid sinus baroreceptor endings are best considered as stretch receptors". These baroreceptors are nerve endings in the wall of the carotid artery just below the car on each side of the head. Their function is to cause impulses to be transmitted along the carotid sinus nerve whose frequency is in direct proportion to the stretching of the arterial walls, which in turn is proportional to the blood pressure within the artery. Physical deformation of the cellular wall probably affects an increasing negative depolarization of the cell membrane until the impulse threshold is reached and an action potential is produced. The frequency of these impulses is also somewhat dependent upon the rate of change of pressure within the artery.
  • the carotid sinus nerve serves as the afferent limb of the baroreceptor reflex and transmits centrally to the vasomotor center those action potentials which arise from the carotid baroreceptors. These afferent impulses act centrally to inhibit sympathetic discharge by the vasomotor center and thereby secondarily affect vascular adjustments.
  • the sympathetic nerves which constitute the efferent limb, complete the carotid sinus reflex circuit and carry impulses which alter peripheral vascular resistance, cardiac output, and venous return.
  • the frequency ofthese impulses varies approximately from to 100 impulses per second as the pressure varies from 0 to 200mm ofmer'cury.
  • the baroreceptive centers continue to be functional, but the threshold stimulus required to trigger the baroreceptor is significantly elevated.
  • chronic hypertension there are'actually fewer impulses along the carotid sinus nerve than in the normotensive situation. .Thus, in the hypertensive person the baroreceptors'are essentially desensitized, in that the impulse frequency is lower for a given pressure than in the normotensive person.
  • Electrodes for major organs of the body may be transmitted to that organ by means of pointed electrodes which penetrate the body of the organ and indirectly make contact with a nerve network without damaging the organ. Such general stimulation is not effective where the impulse must be superimposed on one particular nerve fiber and that fiber alone.
  • the present structure is designed to transmit an electrical impulse specifically and solely to a surgically exposed carotid sinus nerve. Once the carotid sinus nerve has been exposed, the bipolar electrodes are placed around the nerve fiber and sewn closed to avoid penetration and damage to the nerve fiber itself. Because a net DC current would be destructive to the nerve and the electrodes, the present structure is designed to provide a substantially zero net DC current flow.
  • Artificial implantable stimulators in present use have been restricted in their use by reason of their size and bulk.
  • the location of the carotid sinus nerve in the upper neck and head itself prevents implantation of presently used stimulators in the immediate area.
  • the present invention which can operate on power from small rechargeable batteries within the stimulator unit occupies less than one-half the space of the cardiac pacemaker disclosed by Greatbatch.
  • the present invention is of proper size to be seated within the limited confines of the mastoid cavity or locally just under the skin. Further, the present invention includes apparatus which prevents significant net DC current flow through the nerve.
  • a still further object of this invention is to provide an implantable stimulator employing a recharge system to recharge the power supply located within the implantable stimulator.
  • FIG. 1 is an elevational view of an implantable stimulator made according to the present invention
  • FIG. 2 is a diagrammatic profile view of the head of a patient, partially in section, showing the relationship of a stimulator to the head when implanted in a mastoid cavity and connected to a carotid sinus nerve;
  • FIG. 3 is an enlarged fragmentary view of a portion of an implantable stimulator disclosing the stimulator electrodes in electrical contact with a carotid sinus nerve;
  • FIG. 4 is a sectional view taken on line 4 4 in FIG. 3;
  • FIG. is a view of an alternative shape of stimulator unit made according to the present invention.
  • FIG. 6 is a diagrammatic profile view of the head of a patient, partially in section, showing the relationship of the alternative shape stimulator unit of FIG. 5 implanted under the skin;
  • FIG. 7 is a view showing the recharging unit coil of FIG. 8 strapped in a position on a patients head for recharging;
  • FIG. 8 is a perspective view of a recharging unit including the recharging unit coil of FIG. 7;
  • FIG. 9 is a block diagram of an implantable stimulator pulse circuit deriving its power from rechargeable batteries.
  • FIG. I0 is a block diagram of an implantable stimulator pulse circuit deriving its power from replaceable batteries within the stimulator.
  • FIG. ll is a schematic circuit diagram showing a specific electrical pulse generating circuit of the present invention for use within a stimulator unit;
  • FIG. I2 is a block diagram of a stimulator recharging unit deriving its power from an A. C. line source;
  • FIG. 13 is a block diagram of a portable stimulator recharging unit deriving its power from batteries.
  • FIGS. l, 2, 3 in a first form of the invention as seen in FIGS. l, 2, 3
  • the implantable stimulator indicated generally at 1 which has been implanted under skin 2 in the mastoid cavity 3 of a hypertensive patient 4 comprises a pulse generating package 5 connected to electrodes 6 and 7 by flexible electrical conductors 8 and 9.
  • the pulse generating package 5 is encased in a protective mass 13 composed of a synthetic resinous material such as silicon rubber which is compatible with the human body.
  • the conductors are similarly encased in a protective sheath 10, and the electrodes 6 and 7 are partially similarly encased in protective covering 11.
  • Electrodes 6 and 7 are partial cylindrical sections of an electrically conductive material compatible to the human body by being only partial cylinders, electrodes 6 and 7 define longitudinal apertures or slots large enough to receive nerve 12.
  • Electrodes 6 and 7 are placed around exposed carotid sinus nerve 12 and pressed into electrical contact therewith.
  • a flap 14 which is part of protective covering 11 is layed over the exposed portion of electrodes 6 and 7.
  • Flap 14 makes contact with tab 15 which is also part of protective covering 11.
  • Flap 14 is then sewn to tab 15 with surgical stitching 16 to firmly secure electrodes 6 and 7 to carotid sinus nerve l2 and to insulate electrodes 6 and 7 from other body tissues.
  • an alternative shape stimulator indicated generally at 21 is of thin construction as shown in FIG. 6 and is shown implanted under the skin 2 of a hypertensive patient 4 with electrodes 22 and 23 connected to the carotid sinus nerve 12.
  • the implanted carotid sinus nerve stimulator is powered by rechargeable cells. lt can also be powered by a biological generator. Suitable rechargeable batteries 52 of this invention will operate continuously for approximately two weeks when fully charged.
  • the battery power is supplied to an accurately timed pulse circuit 53 whose pulse output is directed through electrodes 6 and 7 to stimulate the carotid sinus nerve.
  • the pulse output is capacitively coupled to electrodes 6 and 7 to block DC current flow from the nerve.
  • a third type of stimulator unit which can be implanted inother areas such as the peetoral muscle or subcutaneously in the abdominal area, will be larger than those positioned in the area of the carotid sinus nerve and thus can be powered by replaceable primary batteries 48 such as mercury cells.
  • This type of, stimulator has the disadvantage of requiring more extensive surgery and the'inconvenience of having long lead wires running subcutaneously up to the electrodes at the baroreceptor site.
  • This type of unit of reasonable size using currently available mercury cells will operate approximately two years before battery replacement is necessary.
  • a pulse circuit, indicated generally at 53, of the present invention is powered by battery 52.
  • Battery 52 has one terminal connected to resistor 54, which is serially connected through capacitor 55 to base 56 of transistor 57.
  • Battery 52 is also connected through a relatively large biasing resistor 58 to base 56 of transistor 57.
  • Battery 52 is also connected directly to emitter 59 of transistor 57.
  • the common junction of biasing resistor 58, capacitor 55, and base 56 of transistor 57 is connected through biasing resistor 60 to the second terminal of battery 52.
  • Collector 61 of transistor 57 is connected through current limiting resistor 62 to the base 63 of transistor 64.
  • Collector of transistor 64 is connected to the common junction of resistor 54 and capacitor 55.
  • Storage capacitor 66 is serially connected between collector 65 and carotid sinus nerve electrode 6.
  • Emitter 67 of transistor 64 is connected directly to carotid sinus nerve electrode 7 and to the battery side of biasing resistance 60.
  • circuit 53 may be described as a free-running complementary multivibrator. A complete cycle of operation may be described as follows:
  • Biasing resistors 60 and 58 which form a voltage divider cause a small current to begin flowing through transistor 57, current limiting resistor 62, from base 63 to emitter 67 of transistor 64 and through battery 52.
  • This small current is amplified by transistor 64 and current flows through resistor 54 causing the potential on collector 65 to lower with respect to the reference potential on electrode 7.
  • the change in potential on collector 65 is coupled through capacitor 55 to base 56 of transistor 57 and causes an increase in condition of transistor 57 thereby leading to a further increase in conduction of transistor 64 and a further lowering of the potential on collector 65.
  • capacitor 55 provides a positive feedback path which quickly results in saturation of transistor 64.
  • capacitor 55 After saturation of transistor 64, capacitor 55 becomes fully charged through the current path comprising emitter 59 and base 56 of transistor 57 and collector 65 and emitter 67 of transistor 64. At this point, with current no longer flowing through capacitor 55, transistor 57 begins to return to its original low conductive state provided by biasing resistors 60 and 58. However, as collector 65 of transistor 64 returns toward the positive battery potential because of the decrease in current through resistor 54, the charge on capacitor 55 completely cuts off transistor 57. Since no current is then flowing through resistor 62 to base 63 of transistor 64, transistor 64 is also completely cut off.
  • Both transistors remain in the non-conducting state until capacitor 55 has discharged sufficiently through resistors 58 and 54 to allow biasing resistors 60 and 58 to bring transistor 57 into a conductive state and the cycle begins again.
  • the stimulation output pulse occurs during the time transistor 64 is conducting, when storage capacitor 66 discharges through collector 65 and emitter 67 of transistor 64, through electrode I 7, the nerve, and back via electrode 6.
  • Pulse width and pulse recurrence frequency are determined by the size of capacitor 55 and resistors 58 and 54, as well as by biasing resistor 60.
  • the presence of capacitor 66, connected serially in the lead to electrode 6, makes the net DC current flow substantially zero for a complete cycle.
  • the circuit of FIG. 1 1 can be adjusted to produce a pulse amplitude of 0.5 to 5 volts, a pulse recurrence frequency of 60-100 pulses per second, and a pulse width from -200 microseconds with a battery voltage of 5 volts. While a specific circuit is shown, the pulse circuit can be any low current pulse circuit which produces no current during the off period.
  • a stimulator recharging unit indicated generally at 27 includes a radio frequency oscillator unit 28 electrically connected by insulated wire 29 to the primary recharging coil 30 encased in a suitable protective casing 31.
  • the energized primary recharging coil 30 is placed in close proximity to the secondary recharging coil 42 located in implantable stimulator unit 1 or 21.
  • Primary recharging coil 30 may be worn in a head band 32 or may be placed in proper position on or within a pillow, to accomplish recharging while the patient sleeps or rests.
  • the battery 52 ofthe stimulator unit 1 may be periodically recharged by electromagnetic induction in secondary recharging coil 42 due to an electromagnetic field established by primary recharging coil 30 of FIG. 8.
  • the radio frequency signal induced in the secondary recharging coil 42 is rectified by the rectifier circuit 43 including diode 44 and capacitor 45.
  • the rectifier circuit output is coupled to battery 52 through resistor 56 and filtering capacitor 47.
  • the primary recharging coil 30 is energized by connection either to an alternating current power source 33 through a rectifier unit 24 and a radio frequency oscillator unit 28, or alternatively to batteries 34 and through a radio frequency oscillator 28.
  • Apparatus for electrical stimulation of a selected nerve of an animal comprising: electrical circuit means including electrical output means; electrode means for atraumatic connection to the external surface of the nerve to be stimulated; electrically conductive means connecting said electrode means to said output means; said output means including means for producing a substantially zero net DC current flow through the nerve; said electrode means, said electrically conductive means and at least a portion of said electrical circuit means adapted to be implanted in the animal; and at least said portion of said electrical circuit means, at least a portion of said electrode means and said electrically conductive means covered by an electrically insulating substance substantially inert to body fluids and tissue.
  • said electrode means comprises at least a pair of electrodes adapted to be connected to the external surface of the nerve in spaced relation.
  • said electrodes each comprise a generally flat, electrically conductive material substantially inert to body fluids and tissue, and generally conformable to the external surface of the nerve.
  • said means for producing a substantially zero net DC current flow comprises capacitance means connected intermediate at least a portion of said electrically conductive means and said electrical circuit means.
  • Apparatus for electrical stimulation of a selected nerve in an animal comprising: first means for providing a timed electrical pulse; second means for producing a substantially zero net DC current flow; electrode means for atraumatic connection to the external surface of the nerve; said electrode means connected to said first means by said second means for producing a substantially zero net DC current flow through the nerve; and said first and second means and at least part of said electrode means being encapsulated in a substance substantially inert to body fluids and tissue.
  • said electrode means comprise at least a pair of electrodes adapted to be connected to the external surface of the nerve in spaced relation.
  • said electrodes each comprise: a generally flat, electrically conductive material substantially inert to body fluids and tissue; said material curving to form a partial cylinder defining an axial aperture extending the length of said cylinder; and said aperture being of sufficient width to permit atraumatic passage of a portion of the nerve therethrough.
  • said apparatus of Claim 5 in which said substance encapsulating at least a part of said electrodes includes: a further portion of said substance integral with said substance; said further portion adated to be folded over the exposed part of said electrodes when they are connected to the nerve, and fastened in the folded position.
  • Apparatus for electrical stimulation of a selected nerve of an animal and adapted to be implanted in the animal comprising: a timed electrical pulse producing circuit; a pair of spaced electrode means for atraumatic connection to the nerve, said electrode means adapted to be positioned in electrically conducting relation to the exterior surface of the nerve; electrical conducting means connecting said pulse producing circuit and one of said electrode means; capacitance means serially connected between said pulse producing circuit and the other of said electrode means; a non-toxic, non-irritant protective covering encasing said electrical conducting means, said capacitance means, and said pulse producing circuit; and said covering including a first member at least partially encompassing said spaced electrode means and a second member for encompassing at least that part of the nerve adapted to be positioned between said electrode means.
  • said electrode means comprise partial cylinders of non-toxic, non-irritant electrically conducting material; and each of said electrode means include a longitudinally extending slot extending from the length of said cylinder and at least initially dimensioned to permit atraumatic passage of the nerve therethrough.
  • said timed electrical pulse producing circuit includes; battery means: a first transistor having first emitter, collector and base electrodes; a second transistor having second emitter, collector and base electrodes; voltage divider means connected across said battery; said first base electrode connected to said voltage divider means; said first emitter electrode connected to one terminal of said battery; said second emitter electrode connected to the other terminal of said battery; impedance means connecting said first collector electrode to said second base electrode; impedance means connecting said first emitter electrode to said second collector electrode; further capacitance means connected between said first base electrode and said second collector electrode; said second collector electrode connected to said capacitance means; and said second emitter electrode connected to said one of said pair of spaced electrode means.
  • said pulse producing circuit includes a battery charging circuit connected to said battery means comprising: a secondary electromagnetic induction coil; rectifier means; further electrical conducting means connecting said secondary coil to said rectifier means and said rectifier means to said battery means; and said secondary coil, said rectifier means and said further electrical conducting means adapted to be implanted in the animal and encased in said protective covering.
  • the apparatus of Claim 13 including means external to said animal for providing energy to the battery charging circuit comprising: electromagnetic induction means including a primary electromagnetic induction coil adapted to be placed external to said animal in inductive relation to said implanted secondary electromagnetic induction coil.
  • the method of stimulation of a selected nerve in a living animal including the steps of: implanting an electrical circuit in the animal; connecting at least a pair of electrodes to the electrical circuit; atraumatically attaching the electrodes to spaced points on the exterior surface of the nerve; energizing the electrical circuit to apply timed stimulating electrical pulses to the nerve of a magnitude sufficient to trigger the nerve for increasing the impulse frequency of the nerve; and sub C. atraumatically coupling the modified pulses to each carotid sinus nerve of the animal.
  • Claim 16 including the step of atraumatically coupling the modified pulses to each carotid sinus nerve of the animal.
  • the method of Claim 16 including the step ofatraumatically coupling the modified pulses to a carotid sinus nerve through bipolar electrodes.

Description

United States Patent [72] Inventors: Seymour I. Schwartz Rochester, New York;
Robert C. Wingrove, Minneapolis, Minnesota [21] Application No.: 800,044
[22] Filed: Feb. 13, 1969 [45] Patented: Aug. 4, 1970 Continuation of Ser. No, 397,899, Sept. 21, 1964, now
' abandoned.
[73] Assignee: Medtronic, Inc., Minneapolis,
Minnesota (21 part interest) a corporation of Minnesota.
[54] IMPLANTABLE NERVE STIMULATOR AND METHOD OF USE 18 Claims, 13 Drawing Figs.
[52] 11.8. C1. 128/419 [51] Int. Cl. A61n H18 [50] Field ofSearch 128/2.1,
[56] References Cited UNITED STATES PATENTS 2,532,788 12/1950 Sarnoff 3,157,181 11/1964 McCarty 3,236,240 2/1966 Bradley 3,253,596 3/1966 Keller,.1r.
Primary Examiner- William E. Kamm Attorney-Lew Schwartz & Donald R. Stone ABSTRACT: An apparatus for stimulating the carotid sinus nerve, being entirely implantable in an animal, having a battery powered timed pulse producing circuit, a pair of electrodes adapted to be atraumatically connected to spaced points on the exterior surface of the nerve to be stimulated, and capacitive coupling between the electrodes and the pulse producing circuit to provide a substantially zero net DC current flow through the nerve.
Patented Aug. 4, 1970 3,522,811
Sheet 1 of 3 INVENTORS Sz na we Z Sara/4x72 BY P055427 6'. k/IAI6ROV6 US. PATENT 3,522,811 IMPLANTABLE NERVE STIMULATGR AND METHOD OF USE This application is a continuation of application Ser. No. 397,899, filed Sept. 21; 1964 and now abandoned.
This invention relates to a method and means for electrically stimulating the carotid sinus nerve to control blood pres sure in hypertensive persons, and more particularly to such means comprising an implantable stimulator atraumatically connected directly to the carotid sinus nerve to supplement carotid sinus nerve impulses with artificial electrical impulses which will be carried to the vasomotor center to control systemic blood pressure. As used herein, the word atraumatic has its normal meaning of not inflicting or causing damage or injury.
In some ninety percent of hypertensive patients, the cause of hypertension is unknown. However, it is known that in the human body there are baroreceptor areas which reflexly contribute to the control of systemic blood pressure. At least four of these major baroreceptor areas have been identified. In ad dition to the two that are located at the origin of the internal carotid arteries bilaterally (carotid sinuses), there are two situated in the aortic arch or in the major branches arising from this arch. It is known that in the hypertensive patient the baroreceptor mechanism located at the branching of the internal and external carotid sinus arteries do not function as they do in the normotensive person.
The carotid sinus baroreceptor endings are best considered as stretch receptors". These baroreceptors are nerve endings in the wall of the carotid artery just below the car on each side of the head. Their function is to cause impulses to be transmitted along the carotid sinus nerve whose frequency is in direct proportion to the stretching of the arterial walls, which in turn is proportional to the blood pressure within the artery. Physical deformation of the cellular wall probably affects an increasing negative depolarization of the cell membrane until the impulse threshold is reached and an action potential is produced. The frequency of these impulses is also somewhat dependent upon the rate of change of pressure within the artery. The carotid sinus nerve serves as the afferent limb of the baroreceptor reflex and transmits centrally to the vasomotor center those action potentials which arise from the carotid baroreceptors. These afferent impulses act centrally to inhibit sympathetic discharge by the vasomotor center and thereby secondarily affect vascular adjustments. The sympathetic nerves, which constitute the efferent limb, complete the carotid sinus reflex circuit and carry impulses which alter peripheral vascular resistance, cardiac output, and venous return.
An increase in the intraluminal pressure of the carotid baroreceptor reflexly, through the vasomotor center, lowers blood pressure, induces bradycardia, decreases cardiac output, and diminishes venous return. When the pressure within the baroreceptor is lowered, the converse situations are noted. The baroreceptor impulses, whose frequency is directly proportional to the intra-arterial pressure and to the rate of rise of this pressure within the baroreceptor organ, travel via the carotid sinus nerves to the hypothalamus area of the brain where they act upon the sympathetic nerve system which controls the diameters of various arteries and arterioles through the body.
In the normotensive person, the frequency ofthese impulses varies approximately from to 100 impulses per second as the pressure varies from 0 to 200mm ofmer'cury. In the hypertensive person, the baroreceptive centers-continue to be functional, but the threshold stimulus required to trigger the baroreceptor is significantly elevated. In chronic hypertension; there are'actually fewer impulses along the carotid sinus nerve than in the normotensive situation. .Thus, in the hypertensive person the baroreceptors'are essentially desensitized, in that the impulse frequency is lower for a given pressure than in the normotensive person.
In treating hypertensive patients, therefore, it is desirable to correct or artificially compensate for the desensitized baroreceptors. Surgical procedures directed at the reversal of hypertension have varied in their approach, but all have been concerned with counteracting an increased peripheral vascular resistance. More recently, attention has been directed away from the neurogenic factor and toward humoral factors eminating from the kidney. Renal artery reconstruction, in appropriate cases, and nephrectomy in others have had dramatic results, but these procedures are not applicable to all hypertensive patients. This invention of implantable artificial electrical means to selectively stimulate the carotid sinus nerve of the baroreceptor system provides a new approach to reducing systemic arterial hypertension. While the invention has been described as being applied to human beings, it could, of course, beadapted to reduce hypertension in other living animals. In fact, the preliminary experimental testing was conducted on dogs.
Electrical impulses for major organs of the body may be transmitted to that organ by means of pointed electrodes which penetrate the body of the organ and indirectly make contact with a nerve network without damaging the organ. Such general stimulation is not effective where the impulse must be superimposed on one particular nerve fiber and that fiber alone. The present structure is designed to transmit an electrical impulse specifically and solely to a surgically exposed carotid sinus nerve. Once the carotid sinus nerve has been exposed, the bipolar electrodes are placed around the nerve fiber and sewn closed to avoid penetration and damage to the nerve fiber itself. Because a net DC current would be destructive to the nerve and the electrodes, the present structure is designed to provide a substantially zero net DC current flow.
Artificial implantable stimulators in present use have been restricted in their use by reason of their size and bulk. The location of the carotid sinus nerve in the upper neck and head itself prevents implantation of presently used stimulators in the immediate area. The present invention which can operate on power from small rechargeable batteries within the stimulator unit occupies less than one-half the space of the cardiac pacemaker disclosed by Greatbatch. The present invention is of proper size to be seated within the limited confines of the mastoid cavity or locally just under the skin. Further, the present invention includes apparatus which prevents significant net DC current flow through the nerve.
It is a principal object of this invention to provide a practical method and means to artificially electrically stimulate the carotid sinus nerves to provide long-term supression of hypertension.
It is another object of this invention to provide an implantable stimulator which will provide long-term supresson of hypertension by artificially adding electrical impulses to the carotid sinus nerves with a net DC current flow through the nerves of substantially zero.
It is a further object of the present invention to provide a battery-powered implantable stimulator which will provide long'term suppression of hypertension by artificially adding electrical impulses to the carotid sinus nerves.
A still further object of this invention is to provide an implantable stimulator employing a recharge system to recharge the power supply located within the implantable stimulator.
It is a still further object of the invention to provide an implantable stimulator employing a portable recharge system to recharge the power supply located within the implantable stimulator.
In the drawings,
FIG. 1 is an elevational view of an implantable stimulator made according to the present invention;
FIG. 2 is a diagrammatic profile view of the head of a patient, partially in section, showing the relationship of a stimulator to the head when implanted in a mastoid cavity and connected to a carotid sinus nerve;
FIG. 3 is an enlarged fragmentary view of a portion of an implantable stimulator disclosing the stimulator electrodes in electrical contact with a carotid sinus nerve;
FIG. 4 is a sectional view taken on line 4 4 in FIG. 3;
FIG. is a view of an alternative shape of stimulator unit made according to the present invention;
FIG. 6 is a diagrammatic profile view of the head of a patient, partially in section, showing the relationship of the alternative shape stimulator unit of FIG. 5 implanted under the skin;
FIG. 7 is a view showing the recharging unit coil of FIG. 8 strapped in a position on a patients head for recharging;
FIG. 8 is a perspective view of a recharging unit including the recharging unit coil of FIG. 7;
FIG. 9 is a block diagram of an implantable stimulator pulse circuit deriving its power from rechargeable batteries.
FIG. I0 is a block diagram of an implantable stimulator pulse circuit deriving its power from replaceable batteries within the stimulator.
FIG. ll is a schematic circuit diagram showing a specific electrical pulse generating circuit of the present invention for use within a stimulator unit;
FIG. I2 is a block diagram of a stimulator recharging unit deriving its power from an A. C. line source; and
FIG. 13 is a block diagram of a portable stimulator recharging unit deriving its power from batteries.
Referring to the drawings and the numerals of reference thereon, in a first form of the invention as seen in FIGS. l, 2, 3
and 4 the implantable stimulator indicated generally at 1 which has been implanted under skin 2 in the mastoid cavity 3 of a hypertensive patient 4 comprises a pulse generating package 5 connected to electrodes 6 and 7 by flexible electrical conductors 8 and 9. The pulse generating package 5 is encased in a protective mass 13 composed of a synthetic resinous material such as silicon rubber which is compatible with the human body. The conductors are similarly encased in a protective sheath 10, and the electrodes 6 and 7 are partially similarly encased in protective covering 11. Electrodes 6 and 7 are partial cylindrical sections of an electrically conductive material compatible to the human body by being only partial cylinders, electrodes 6 and 7 define longitudinal apertures or slots large enough to receive nerve 12. Electrodes 6 and 7 are placed around exposed carotid sinus nerve 12 and pressed into electrical contact therewith. A flap 14 which is part of protective covering 11 is layed over the exposed portion of electrodes 6 and 7. Flap 14 makes contact with tab 15 which is also part of protective covering 11. Flap 14 is then sewn to tab 15 with surgical stitching 16 to firmly secure electrodes 6 and 7 to carotid sinus nerve l2 and to insulate electrodes 6 and 7 from other body tissues.
Referring to FIGS. 5 and 6 of the drawings, an alternative shape stimulator indicated generally at 21 is of thin construction as shown in FIG. 6 and is shown implanted under the skin 2 of a hypertensive patient 4 with electrodes 22 and 23 connected to the carotid sinus nerve 12.
Referring to FIG. 9 of the drawing, the implanted carotid sinus nerve stimulator is powered by rechargeable cells. lt can also be powered by a biological generator. Suitable rechargeable batteries 52 of this invention will operate continuously for approximately two weeks when fully charged. The battery power is supplied to an accurately timed pulse circuit 53 whose pulse output is directed through electrodes 6 and 7 to stimulate the carotid sinus nerve. The pulse output is capacitively coupled to electrodes 6 and 7 to block DC current flow from the nerve.
Referring to FIG. l0 ofthe drawings, a third type of stimulator unit which can be implanted inother areas such as the peetoral muscle or subcutaneously in the abdominal area, will be larger than those positioned in the area of the carotid sinus nerve and thus can be powered by replaceable primary batteries 48 such as mercury cells. This type of, stimulator has the disadvantage of requiring more extensive surgery and the'inconvenience of having long lead wires running subcutaneously up to the electrodes at the baroreceptor site. This type of unit of reasonable size using currently available mercury cells will operate approximately two years before battery replacement is necessary.
Referring to FIG. 11 of the drawings, a pulse circuit, indicated generally at 53, of the present invention is powered by battery 52. Battery 52 has one terminal connected to resistor 54, which is serially connected through capacitor 55 to base 56 of transistor 57. Battery 52 is also connected through a relatively large biasing resistor 58 to base 56 of transistor 57. Battery 52 is also connected directly to emitter 59 of transistor 57. The common junction of biasing resistor 58, capacitor 55, and base 56 of transistor 57 is connected through biasing resistor 60 to the second terminal of battery 52. Collector 61 of transistor 57 is connected through current limiting resistor 62 to the base 63 of transistor 64. Collector of transistor 64 is connected to the common junction of resistor 54 and capacitor 55. Storage capacitor 66 is serially connected between collector 65 and carotid sinus nerve electrode 6. Emitter 67 of transistor 64 is connected directly to carotid sinus nerve electrode 7 and to the battery side of biasing resistance 60.
With voltage of battery 52 impressed upon the circuit storage capacitor 66 will begin to charge through the circuit consisting of battery 52, resistor 54, electrodes 6 and 7, and the output load resistance comprising nerve 12 until collector 65 of transistor 64 reaches positive potential of battery 52 with respect to electrode 7. Between pulses collector 65 remains nearly at battery 52 potential with respect to electrode 7. The circuit 53 may be described as a free-running complementary multivibrator. A complete cycle of operation may be described as follows:
Biasing resistors 60 and 58, which form a voltage divider cause a small current to begin flowing through transistor 57, current limiting resistor 62, from base 63 to emitter 67 of transistor 64 and through battery 52. This small current is amplified by transistor 64 and current flows through resistor 54 causing the potential on collector 65 to lower with respect to the reference potential on electrode 7. The change in potential on collector 65 is coupled through capacitor 55 to base 56 of transistor 57 and causes an increase in condition of transistor 57 thereby leading to a further increase in conduction of transistor 64 and a further lowering of the potential on collector 65. Thus, capacitor 55 provides a positive feedback path which quickly results in saturation of transistor 64. After saturation of transistor 64, capacitor 55 becomes fully charged through the current path comprising emitter 59 and base 56 of transistor 57 and collector 65 and emitter 67 of transistor 64. At this point, with current no longer flowing through capacitor 55, transistor 57 begins to return to its original low conductive state provided by biasing resistors 60 and 58. However, as collector 65 of transistor 64 returns toward the positive battery potential because of the decrease in current through resistor 54, the charge on capacitor 55 completely cuts off transistor 57. Since no current is then flowing through resistor 62 to base 63 of transistor 64, transistor 64 is also completely cut off. Both transistors remain in the non-conducting state until capacitor 55 has discharged sufficiently through resistors 58 and 54 to allow biasing resistors 60 and 58 to bring transistor 57 into a conductive state and the cycle begins again. The stimulation output pulse occurs during the time transistor 64 is conducting, when storage capacitor 66 discharges through collector 65 and emitter 67 of transistor 64, through electrode I 7, the nerve, and back via electrode 6. Pulse width and pulse recurrence frequency are determined by the size of capacitor 55 and resistors 58 and 54, as well as by biasing resistor 60. The presence of capacitor 66, connected serially in the lead to electrode 6, makes the net DC current flow substantially zero for a complete cycle.
In actual use the circuit of FIG. 1 1 can be adjusted to produce a pulse amplitude of 0.5 to 5 volts, a pulse recurrence frequency of 60-100 pulses per second, and a pulse width from -200 microseconds with a battery voltage of 5 volts. While a specific circuit is shown, the pulse circuit can be any low current pulse circuit which produces no current during the off period.
Referring to FIGS. 7 and 8 of the drawings, a stimulator recharging unit indicated generally at 27 includes a radio frequency oscillator unit 28 electrically connected by insulated wire 29 to the primary recharging coil 30 encased in a suitable protective casing 31. When it is desired to recharge the battery 52 located within implantable stimulator unit 1 or 21 which has been implanted in the patient 4, the energized primary recharging coil 30 is placed in close proximity to the secondary recharging coil 42 located in implantable stimulator unit 1 or 21. Primary recharging coil 30 may be worn in a head band 32 or may be placed in proper position on or within a pillow, to accomplish recharging while the patient sleeps or rests.
Referring to FIGS. 9 and 1 l of the drawings, the battery 52 ofthe stimulator unit 1 may be periodically recharged by electromagnetic induction in secondary recharging coil 42 due to an electromagnetic field established by primary recharging coil 30 of FIG. 8. The radio frequency signal induced in the secondary recharging coil 42 is rectified by the rectifier circuit 43 including diode 44 and capacitor 45. The rectifier circuit output is coupled to battery 52 through resistor 56 and filtering capacitor 47.
Referring to FIGS. 12 and i3 of the drawings, the primary recharging coil 30 is energized by connection either to an alternating current power source 33 through a rectifier unit 24 and a radio frequency oscillator unit 28, or alternatively to batteries 34 and through a radio frequency oscillator 28.
We claim:
1. Apparatus for electrical stimulation of a selected nerve of an animal comprising: electrical circuit means including electrical output means; electrode means for atraumatic connection to the external surface of the nerve to be stimulated; electrically conductive means connecting said electrode means to said output means; said output means including means for producing a substantially zero net DC current flow through the nerve; said electrode means, said electrically conductive means and at least a portion of said electrical circuit means adapted to be implanted in the animal; and at least said portion of said electrical circuit means, at least a portion of said electrode means and said electrically conductive means covered by an electrically insulating substance substantially inert to body fluids and tissue.
2. The apparatus of Claim 1 in which: said electrode means comprises at least a pair of electrodes adapted to be connected to the external surface of the nerve in spaced relation.
3. The apparatus of Claim 2 in which: said electrodes each comprise a generally flat, electrically conductive material substantially inert to body fluids and tissue, and generally conformable to the external surface of the nerve.
4. The apparatus of Claim 1 in which: said means for producing a substantially zero net DC current flow comprises capacitance means connected intermediate at least a portion of said electrically conductive means and said electrical circuit means.
5. Apparatus for electrical stimulation of a selected nerve in an animal, the apparatus adapted to be-surgically implanted in the animal, comprising: first means for providing a timed electrical pulse; second means for producing a substantially zero net DC current flow; electrode means for atraumatic connection to the external surface of the nerve; said electrode means connected to said first means by said second means for producing a substantially zero net DC current flow through the nerve; and said first and second means and at least part of said electrode means being encapsulated in a substance substantially inert to body fluids and tissue. 1
6. The apparatus of Claim 5 in which said second means comprises a capacitor serially connected between said first means and at least a portion of said electrode means.
7. The apparatus of Claim 5 in which: said electrode means comprise at least a pair of electrodes adapted to be connected to the external surface of the nerve in spaced relation.
8. The apparatus of Claim 7 in which said electrodes each comprise: a generally flat, electrically conductive material substantially inert to body fluids and tissue; said material curving to form a partial cylinder defining an axial aperture extending the length of said cylinder; and said aperture being of sufficient width to permit atraumatic passage of a portion of the nerve therethrough.
9. The apparatus of Claim 5 in which said substance encapsulating at least a part of said electrodes includes: a further portion of said substance integral with said substance; said further portion adated to be folded over the exposed part of said electrodes when they are connected to the nerve, and fastened in the folded position.
10. Apparatus for electrical stimulation of a selected nerve of an animal and adapted to be implanted in the animal comprising: a timed electrical pulse producing circuit; a pair of spaced electrode means for atraumatic connection to the nerve, said electrode means adapted to be positioned in electrically conducting relation to the exterior surface of the nerve; electrical conducting means connecting said pulse producing circuit and one of said electrode means; capacitance means serially connected between said pulse producing circuit and the other of said electrode means; a non-toxic, non-irritant protective covering encasing said electrical conducting means, said capacitance means, and said pulse producing circuit; and said covering including a first member at least partially encompassing said spaced electrode means and a second member for encompassing at least that part of the nerve adapted to be positioned between said electrode means.
11. The apparatus of Claim 10 in which: said electrode means comprise partial cylinders of non-toxic, non-irritant electrically conducting material; and each of said electrode means include a longitudinally extending slot extending from the length of said cylinder and at least initially dimensioned to permit atraumatic passage of the nerve therethrough.
12. The apparatus ofClaim 10 in which said timed electrical pulse producing circuit includes; battery means: a first transistor having first emitter, collector and base electrodes; a second transistor having second emitter, collector and base electrodes; voltage divider means connected across said battery; said first base electrode connected to said voltage divider means; said first emitter electrode connected to one terminal of said battery; said second emitter electrode connected to the other terminal of said battery; impedance means connecting said first collector electrode to said second base electrode; impedance means connecting said first emitter electrode to said second collector electrode; further capacitance means connected between said first base electrode and said second collector electrode; said second collector electrode connected to said capacitance means; and said second emitter electrode connected to said one of said pair of spaced electrode means.
13. The apparatus of Claim 12 in which said pulse producing circuit includes a battery charging circuit connected to said battery means comprising: a secondary electromagnetic induction coil; rectifier means; further electrical conducting means connecting said secondary coil to said rectifier means and said rectifier means to said battery means; and said secondary coil, said rectifier means and said further electrical conducting means adapted to be implanted in the animal and encased in said protective covering.
14. The apparatus of Claim 13 including means external to said animal for providing energy to the battery charging circuit comprising: electromagnetic induction means including a primary electromagnetic induction coil adapted to be placed external to said animal in inductive relation to said implanted secondary electromagnetic induction coil.
15. The method of stimulation ofa selected nerve in a living animal including the steps of: implanting an electrical circuit in the animal; connecting at least a pair of electrodes to the electrical circuit; atraumatically attaching the electrodes to spaced points on the exterior surface of the nerve; energizing the electrical circuit to apply timed stimulating electrical pulses to the nerve of a magnitude sufficient to trigger the nerve for increasing the impulse frequency of the nerve; and sub C. atraumatically coupling the modified pulses to each carotid sinus nerve of the animal.
17. The method of Claim 16 including the step of atraumatically coupling the modified pulses to each carotid sinus nerve of the animal.
18. The method of Claim 16 including the step ofatraumatically coupling the modified pulses to a carotid sinus nerve through bipolar electrodes.
US800044A 1969-02-13 1969-02-13 Implantable nerve stimulator and method of use Expired - Lifetime US3522811A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80004469A 1969-02-13 1969-02-13

Publications (1)

Publication Number Publication Date
US3522811A true US3522811A (en) 1970-08-04

Family

ID=25177363

Family Applications (1)

Application Number Title Priority Date Filing Date
US800044A Expired - Lifetime US3522811A (en) 1969-02-13 1969-02-13 Implantable nerve stimulator and method of use

Country Status (1)

Country Link
US (1) US3522811A (en)

Cited By (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3724467A (en) * 1971-04-23 1973-04-03 Avery Labor Inc Electrode implant for the neuro-stimulation of the spinal cord
FR2349340A1 (en) * 1976-04-29 1977-11-25 Medtronic Inc IMPLANTABLE RECEIVER CIRCUIT
US4509521A (en) * 1983-01-31 1985-04-09 Barry Terrence J Headache relief method
US4640286A (en) * 1984-11-02 1987-02-03 Staodynamics, Inc. Optimized nerve fiber stimulation
US4813418A (en) * 1987-02-02 1989-03-21 Staodynamics, Inc. Nerve fiber stimulation using symmetrical biphasic waveform applied through plural equally active electrodes
US5038781A (en) * 1988-01-21 1991-08-13 Hassan Hamedi Multi-electrode neurological stimulation apparatus
US5330507A (en) * 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
US5571150A (en) * 1994-12-19 1996-11-05 Cyberonics, Inc. Treatment of patients in coma by nerve stimulation
US5578061A (en) * 1994-06-24 1996-11-26 Pacesetter Ab Method and apparatus for cardiac therapy by stimulation of a physiological representative of the parasympathetic nervous system
US5700282A (en) * 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
US5792067A (en) * 1995-11-21 1998-08-11 Karell; Manuel L. Apparatus and method for mitigating sleep and other disorders through electromuscular stimulation
USRE36120E (en) * 1992-11-12 1999-03-02 Karell; Manuel L. Snopper--the snoring stopper anti-snoring mouth device
US6073048A (en) * 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US6366815B1 (en) * 1997-01-13 2002-04-02 Neurodan A /S Implantable nerve stimulator electrode
US20020107553A1 (en) * 2000-10-26 2002-08-08 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
US20020143369A1 (en) * 2000-10-26 2002-10-03 Medtronic, Inc. Method and apparatus to minimize effects of a cardiac insult
US20030060857A1 (en) * 2000-09-27 2003-03-27 Perrson Bruce J. Electrode designs and methods of use for cardiovascular reflex control devices
US20030100924A1 (en) * 2001-04-20 2003-05-29 Foreman Robert D. Cardiac neuromodulation and methods of using same
US20030114905A1 (en) * 1999-10-01 2003-06-19 Kuzma Janusz A. Implantable microdevice with extended lead and remote electrode
WO2003076008A1 (en) 2002-03-14 2003-09-18 Brainsgate Ltd. Technique for blood pressure regulation
US20040010303A1 (en) * 2001-09-26 2004-01-15 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US20040133248A1 (en) * 2002-10-15 2004-07-08 Medtronic, Inc. Channel-selective blanking for a medical device system
US20040133119A1 (en) * 2002-10-15 2004-07-08 Medtronic, Inc. Scoring of sensed neurological signals for use with a medical device system
US20040138518A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Medical device system with relaying module for treatment of nervous system disorders
US20040138536A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
US20040138580A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Signal quality monitoring and control for a medical device system
US20040138647A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Cycle mode providing redundant back-up to ensure termination of treatment therapy in a medical device system
US20040138517A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Multi-modal operation of a medical device system
US20040138516A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Configuring and testing treatment therapy parameters for a medical device system
US20040138711A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Control of treatment therapy during start-up and during operation of a medical device system
US20040153436A1 (en) * 2002-10-15 2004-08-05 Pope Cameron A. Automated information management system and methods
US20040158119A1 (en) * 2002-10-15 2004-08-12 Medtronic, Inc. Screening techniques for management of a nervous system disorder
US20040176817A1 (en) * 2002-12-09 2004-09-09 Medtronic, Inc. Modular implantable medical device
US20040220553A1 (en) * 2001-04-10 2004-11-04 Medtronic, Inc. Implantable therapeutic substance delivery device
US20040243236A1 (en) * 2001-03-08 2004-12-02 Akihisa Furukawa Artificial sphincter
US20040254616A1 (en) * 2000-09-27 2004-12-16 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US20050004637A1 (en) * 2003-05-16 2005-01-06 Ruchika Singhal Explantation of implantable medical device
US20050004618A1 (en) * 2003-05-16 2005-01-06 Scott Erik R. Implantable medical device with a nonhermetic battery
US20050004619A1 (en) * 2003-05-16 2005-01-06 Wahlstrand Carl D. Headset recharger for cranially implantable medical devices
US6850801B2 (en) 2001-09-26 2005-02-01 Cvrx, Inc. Mapping methods for cardiovascular reflex control devices
US20050119703A1 (en) * 1998-08-05 2005-06-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
WO2005051306A2 (en) * 1998-08-05 2005-06-09 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US20050149132A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Automatic baroreflex modulation based on cardiac activity
US20050149126A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulation to treat acute myocardial infarction
US20050240242A1 (en) * 1998-08-05 2005-10-27 Dilorenzo Daniel J Closed-loop feedback-driven neuromodulation
US20050245971A1 (en) * 2004-04-28 2005-11-03 Brockway Brian P Implantable medical devices and related methods
US20050288729A1 (en) * 2004-06-08 2005-12-29 Imad Libbus Coordinated therapy for disordered breathing including baroreflex modulation
US20060004417A1 (en) * 2004-06-30 2006-01-05 Cvrx, Inc. Baroreflex activation for arrhythmia treatment
US6985774B2 (en) 2000-09-27 2006-01-10 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US20060155495A1 (en) * 2002-10-15 2006-07-13 Medtronic, Inc. Synchronization and calibration of clocks for a medical device and calibrated clock
US20060184204A1 (en) * 2005-02-11 2006-08-17 Advanced Bionics Corporation Implantable microstimulator having a separate battery unit and methods of use thereof
US20060224191A1 (en) * 1998-08-05 2006-10-05 Dilorenzo Daniel J Systems and methods for monitoring a patient's neurological disease state
US7149572B2 (en) 2002-10-15 2006-12-12 Medtronic, Inc. Phase shifting of neurological signals in a medical device system
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US7218964B2 (en) 2000-10-26 2007-05-15 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US20070129768A1 (en) * 2005-12-07 2007-06-07 Advanced Bionics Corporation Battery Protection and Zero-Volt Battery Recovery System for an Implantable Medical Device
US20070142879A1 (en) * 2005-12-20 2007-06-21 The Cleveland Clinic Foundation Apparatus and method for modulating the baroreflex system
US20070162086A1 (en) * 1998-08-05 2007-07-12 Bioneuronics Corporation Monitoring efficacy of neural modulation therapy
US20070191895A1 (en) * 2001-04-20 2007-08-16 Foreman Robert D Activation of cardiac alpha receptors by spinal cord stimulation produces cardioprotection against ischemia, arrhythmias, and heart failure
US7277758B2 (en) 1998-08-05 2007-10-02 Neurovista Corporation Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
US20070255323A1 (en) * 2006-04-28 2007-11-01 Medtronic, Inc. Implantable medical device for the concurrent treatment of a plurality of neurological disorders and method therefore
US20070276442A1 (en) * 2005-05-19 2007-11-29 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US20070293906A1 (en) * 2006-06-20 2007-12-20 Ebr Systems, Inc. Systems and methods for implantable leadless nerve stimulation
US7324851B1 (en) 1998-08-05 2008-01-29 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US20080033508A1 (en) * 2002-10-15 2008-02-07 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
US20080167699A1 (en) * 2000-09-27 2008-07-10 Cvrx, Inc. Method and Apparatus for Providing Complex Tissue Stimulation Parameters
US7403820B2 (en) 1998-08-05 2008-07-22 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US7450994B1 (en) 2004-12-16 2008-11-11 Advanced Bionics, Llc Estimating flap thickness for cochlear implants
US7596408B2 (en) 2002-12-09 2009-09-29 Medtronic, Inc. Implantable medical device with anti-infection agent
US7596399B2 (en) 2004-04-29 2009-09-29 Medtronic, Inc Implantation of implantable medical device
US20090276025A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7616997B2 (en) 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US7643875B2 (en) 2003-12-24 2010-01-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US7647114B2 (en) 2003-12-24 2010-01-12 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7657312B2 (en) 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US7676263B2 (en) 2006-06-23 2010-03-09 Neurovista Corporation Minimally invasive system for selecting patient-specific therapy parameters
US7706884B2 (en) * 2003-12-24 2010-04-27 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US20100114203A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114211A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Shunt-current reduction techniques for an implantable therapy system
US20100114221A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US20100114224A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114199A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114205A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Shunt-current reduction housing for an implantable therapy system
US20100114202A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114197A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114208A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114201A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114200A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114198A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100138340A1 (en) * 2002-09-19 2010-06-03 John Earl Shirey System and apparatus for transaction fraud processing
US20100140957A1 (en) * 2008-12-04 2010-06-10 Searete Llc Method for generation of power from intraluminal pressure changes
US20100140956A1 (en) * 2008-12-04 2010-06-10 Searete Llc. Method for generation of power from intraluminal pressure changes
US20100141052A1 (en) * 2008-12-04 2010-06-10 Searete Llc,A Limited Liability Corporation Of The State Of Delaware System for powering devices from intraluminal pressure changes
US20100140958A1 (en) * 2008-12-04 2010-06-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for powering devices from intraluminal pressure changes
US20100140943A1 (en) * 2008-12-04 2010-06-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Device for storage of intraluminally generated power
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US7747323B2 (en) 2004-06-08 2010-06-29 Cardiac Pacemakers, Inc. Adaptive baroreflex stimulation therapy for disordered breathing
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
US20100274321A1 (en) * 2003-12-24 2010-10-28 Imad Libbus Baroreflex activation therapy with conditional shut off
US7840271B2 (en) 2000-09-27 2010-11-23 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20110143648A1 (en) * 2005-01-06 2011-06-16 Oy Halton Group Ltd. Automatic displacement ventilation system with heating mode
US20110213222A1 (en) * 2007-01-25 2011-09-01 Leyde Kent W Communication Error Alerting in an Epilepsy Monitoring System
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US8086314B1 (en) 2000-09-27 2011-12-27 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US8109879B2 (en) 2006-01-10 2012-02-07 Cardiac Pacemakers, Inc. Assessing autonomic activity using baroreflex analysis
US8116883B2 (en) 2003-06-04 2012-02-14 Synecor Llc Intravascular device for neuromodulation
US8126560B2 (en) 2003-12-24 2012-02-28 Cardiac Pacemakers, Inc. Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US8131362B2 (en) 2005-03-11 2012-03-06 Cardiac Pacemakers, Inc. Combined neural stimulation and cardiac resynchronization therapy
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US8150520B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods for catheter-based renal denervation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8224437B2 (en) 2003-10-22 2012-07-17 Cvrx, Inc. Baroreflex activation for sedation and sleep
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8452394B2 (en) 2008-10-31 2013-05-28 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8498698B2 (en) 2008-10-31 2013-07-30 Medtronic, Inc. Isolation of sensing and stimulation circuitry
US8535222B2 (en) 2002-12-04 2013-09-17 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US8560060B2 (en) 2008-10-31 2013-10-15 Medtronic, Inc. Isolation of sensing and stimulation circuitry
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8594794B2 (en) 2007-07-24 2013-11-26 Cvrx, Inc. Baroreflex activation therapy with incrementally changing intensity
US8606356B2 (en) 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
US8620423B2 (en) 2002-04-08 2013-12-31 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermal modulation of nerves contributing to renal function
US8626300B2 (en) 2002-04-08 2014-01-07 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US8771252B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US8818514B2 (en) 2002-04-08 2014-08-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for intravascularly-induced neuromodulation
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US20140330333A1 (en) * 1997-07-16 2014-11-06 Metacure Limited Methods and devices for modifying vascular parameters
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US9084901B2 (en) 2006-04-28 2015-07-21 Medtronic, Inc. Cranial implant
US9162072B2 (en) 2004-04-30 2015-10-20 Medtronic, Inc. Implantable medical device with lubricious material
US9192715B2 (en) 2002-04-08 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal nerve blocking
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9327122B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9345883B2 (en) 2014-02-14 2016-05-24 Boston Scientific Neuromodulation Corporation Rechargeable-battery implantable medical device having a primary battery active during a rechargeable-battery undervoltage condition
US9353733B2 (en) 2008-12-04 2016-05-31 Deep Science, Llc Device and system for generation of power from intraluminal pressure changes
US9393432B2 (en) 2008-10-31 2016-07-19 Medtronic, Inc. Non-hermetic direct current interconnect
US9393433B2 (en) 2011-07-20 2016-07-19 Boston Scientific Neuromodulation Corporation Battery management for an implantable medical device
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US9439726B2 (en) 2002-04-08 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9452286B2 (en) 2006-06-20 2016-09-27 Ebr Systems, Inc. Systems and methods for implantable leadless tissue stimulation
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US9898656B2 (en) 2007-01-25 2018-02-20 Cyberonics, Inc. Systems and methods for identifying a contra-ictal condition in a subject
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10080864B2 (en) 2012-10-19 2018-09-25 Medtronic Ardian Luxembourg S.A.R.L. Packaging for catheter treatment devices and associated devices, systems, and methods
US10179020B2 (en) 2010-10-25 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10537385B2 (en) 2008-12-31 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility
US10874455B2 (en) 2012-03-08 2020-12-29 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US11338140B2 (en) 2012-03-08 2022-05-24 Medtronic Ardian Luxembourg S.A.R.L. Monitoring of neuromodulation using biomarkers
US11406317B2 (en) 2007-12-28 2022-08-09 Livanova Usa, Inc. Method for detecting neurological and clinical manifestations of a seizure

Cited By (418)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3724467A (en) * 1971-04-23 1973-04-03 Avery Labor Inc Electrode implant for the neuro-stimulation of the spinal cord
FR2349340A1 (en) * 1976-04-29 1977-11-25 Medtronic Inc IMPLANTABLE RECEIVER CIRCUIT
US4509521A (en) * 1983-01-31 1985-04-09 Barry Terrence J Headache relief method
US4640286A (en) * 1984-11-02 1987-02-03 Staodynamics, Inc. Optimized nerve fiber stimulation
US4803988A (en) * 1984-11-02 1989-02-14 Staodynamics, Inc. Nerve fiber stimulation using plural equally active electrodes
US4813418A (en) * 1987-02-02 1989-03-21 Staodynamics, Inc. Nerve fiber stimulation using symmetrical biphasic waveform applied through plural equally active electrodes
US5038781A (en) * 1988-01-21 1991-08-13 Hassan Hamedi Multi-electrode neurological stimulation apparatus
US5330507A (en) * 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
USRE36120E (en) * 1992-11-12 1999-03-02 Karell; Manuel L. Snopper--the snoring stopper anti-snoring mouth device
US5578061A (en) * 1994-06-24 1996-11-26 Pacesetter Ab Method and apparatus for cardiac therapy by stimulation of a physiological representative of the parasympathetic nervous system
US5571150A (en) * 1994-12-19 1996-11-05 Cyberonics, Inc. Treatment of patients in coma by nerve stimulation
EP0854742A1 (en) * 1995-10-13 1998-07-29 Jacob Zabara Heart rhythm stabilization using a neurocybernetic prosthesis
EP0854742A4 (en) * 1995-10-13 1998-11-18 Jacob Zabara Heart rhythm stabilization using a neurocybernetic prosthesis
US5700282A (en) * 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
US6073048A (en) * 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US5792067A (en) * 1995-11-21 1998-08-11 Karell; Manuel L. Apparatus and method for mitigating sleep and other disorders through electromuscular stimulation
US6366815B1 (en) * 1997-01-13 2002-04-02 Neurodan A /S Implantable nerve stimulator electrode
US9265930B2 (en) * 1997-07-16 2016-02-23 Metacure Limited Methods and devices for modifying vascular parameters
US20140330333A1 (en) * 1997-07-16 2014-11-06 Metacure Limited Methods and devices for modifying vascular parameters
US7403820B2 (en) 1998-08-05 2008-07-22 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US9421373B2 (en) 1998-08-05 2016-08-23 Cyberonics, Inc. Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
WO2005051306A2 (en) * 1998-08-05 2005-06-09 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US20050240242A1 (en) * 1998-08-05 2005-10-27 Dilorenzo Daniel J Closed-loop feedback-driven neuromodulation
US7324851B1 (en) 1998-08-05 2008-01-29 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US20070162086A1 (en) * 1998-08-05 2007-07-12 Bioneuronics Corporation Monitoring efficacy of neural modulation therapy
US7853329B2 (en) 1998-08-05 2010-12-14 Neurovista Corporation Monitoring efficacy of neural modulation therapy
US7277758B2 (en) 1998-08-05 2007-10-02 Neurovista Corporation Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
US8781597B2 (en) 1998-08-05 2014-07-15 Cyberonics, Inc. Systems for monitoring a patient's neurological disease state
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US7209787B2 (en) * 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US7930035B2 (en) 1998-08-05 2011-04-19 Neurovista Corporation Providing output indicative of subject's disease state
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US20050119703A1 (en) * 1998-08-05 2005-06-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US20060224191A1 (en) * 1998-08-05 2006-10-05 Dilorenzo Daniel J Systems and methods for monitoring a patient's neurological disease state
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US7242984B2 (en) 1998-08-05 2007-07-10 Neurovista Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US9113801B2 (en) 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US7231254B2 (en) 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US7623928B2 (en) 1998-08-05 2009-11-24 Neurovista Corporation Controlling a subject's susceptibility to a seizure
WO2005051306A3 (en) * 1998-08-05 2006-05-18 Bioneuronics Corp Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US9320900B2 (en) 1998-08-05 2016-04-26 Cyberonics, Inc. Methods and systems for determining subject-specific parameters for a neuromodulation therapy
US8032220B2 (en) 1999-10-01 2011-10-04 Boston Scientific Neuromodulation Corporation Method of implanting microdevice with extended lead and remote electrode
US20110172679A1 (en) * 1999-10-01 2011-07-14 Boston Scientific Neuromodulation Corporation Method of implanting microdevice with extended lead and remote electrode
US7949395B2 (en) * 1999-10-01 2011-05-24 Boston Scientific Neuromodulation Corporation Implantable microdevice with extended lead and remote electrode
US20030114905A1 (en) * 1999-10-01 2003-06-19 Kuzma Janusz A. Implantable microdevice with extended lead and remote electrode
US20030060857A1 (en) * 2000-09-27 2003-03-27 Perrson Bruce J. Electrode designs and methods of use for cardiovascular reflex control devices
US20040254616A1 (en) * 2000-09-27 2004-12-16 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
EP2399644A3 (en) * 2000-09-27 2012-03-14 CVRX, Inc. Devices for cardiovascular reflex control
US8060206B2 (en) * 2000-09-27 2011-11-15 Cvrx, Inc. Baroreflex modulation to gradually decrease blood pressure
EP2085114A3 (en) * 2000-09-27 2009-10-28 CVRX, Inc. Devices and methods for cardiovascular reflex control
US8290595B2 (en) 2000-09-27 2012-10-16 Cvrx, Inc. Method and apparatus for stimulation of baroreceptors in pulmonary artery
US6985774B2 (en) 2000-09-27 2006-01-10 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7801614B2 (en) 2000-09-27 2010-09-21 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7616997B2 (en) 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US8086314B1 (en) 2000-09-27 2011-12-27 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US7623926B2 (en) 2000-09-27 2009-11-24 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US8880190B2 (en) 2000-09-27 2014-11-04 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US7813812B2 (en) 2000-09-27 2010-10-12 Cvrx, Inc. Baroreflex stimulator with integrated pressure sensor
US20080167699A1 (en) * 2000-09-27 2008-07-10 Cvrx, Inc. Method and Apparatus for Providing Complex Tissue Stimulation Parameters
US8583236B2 (en) 2000-09-27 2013-11-12 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US9427583B2 (en) 2000-09-27 2016-08-30 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US9044609B2 (en) 2000-09-27 2015-06-02 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US7949400B2 (en) 2000-09-27 2011-05-24 Cvrx, Inc. Devices and methods for cardiovascular reflex control via coupled electrodes
US8606359B2 (en) 2000-09-27 2013-12-10 Cvrx, Inc. System and method for sustained baroreflex stimulation
US7158832B2 (en) * 2000-09-27 2007-01-02 Cvrx, Inc. Electrode designs and methods of use for cardiovascular reflex control devices
US8712531B2 (en) 2000-09-27 2014-04-29 Cvrx, Inc. Automatic baroreflex modulation responsive to adverse event
US7840271B2 (en) 2000-09-27 2010-11-23 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US8718789B2 (en) 2000-09-27 2014-05-06 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US8838246B2 (en) 2000-09-27 2014-09-16 Cvrx, Inc. Devices and methods for cardiovascular reflex treatments
US8417334B2 (en) 2000-10-26 2013-04-09 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
US7218964B2 (en) 2000-10-26 2007-05-15 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US9656079B2 (en) 2000-10-26 2017-05-23 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
US20020143369A1 (en) * 2000-10-26 2002-10-03 Medtronic, Inc. Method and apparatus to minimize effects of a cardiac insult
US20020107553A1 (en) * 2000-10-26 2002-08-08 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
US20040243236A1 (en) * 2001-03-08 2004-12-02 Akihisa Furukawa Artificial sphincter
US6997952B2 (en) * 2001-03-08 2006-02-14 Nec Tokin Corporation Artificial sphincter
US20040220553A1 (en) * 2001-04-10 2004-11-04 Medtronic, Inc. Implantable therapeutic substance delivery device
US7758568B2 (en) 2001-04-10 2010-07-20 Medtronic, Inc. Implantable therapeutic substance delivery device
US20110066200A1 (en) * 2001-04-20 2011-03-17 Foreman Robert D Cardiac neuromodulation and methods of using same
US9072901B2 (en) 2001-04-20 2015-07-07 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
US7769441B2 (en) 2001-04-20 2010-08-03 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
US7860563B2 (en) 2001-04-20 2010-12-28 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
US10279180B2 (en) 2001-04-20 2019-05-07 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
US20060111745A1 (en) * 2001-04-20 2006-05-25 Foreman Robert D Cardiac neuromodulation and methods of using same
US20060111746A1 (en) * 2001-04-20 2006-05-25 Foreman Robert D Cardiac neuromodulation and methods of using same
US20030100924A1 (en) * 2001-04-20 2003-05-29 Foreman Robert D. Cardiac neuromodulation and methods of using same
US20070191895A1 (en) * 2001-04-20 2007-08-16 Foreman Robert D Activation of cardiac alpha receptors by spinal cord stimulation produces cardioprotection against ischemia, arrhythmias, and heart failure
US7499742B2 (en) 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US6850801B2 (en) 2001-09-26 2005-02-01 Cvrx, Inc. Mapping methods for cardiovascular reflex control devices
US20040010303A1 (en) * 2001-09-26 2004-01-15 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
WO2003076008A1 (en) 2002-03-14 2003-09-18 Brainsgate Ltd. Technique for blood pressure regulation
US20060089678A1 (en) * 2002-03-14 2006-04-27 Alon Shalev Technique for blood pressure regulation
US9675413B2 (en) 2002-04-08 2017-06-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US8131372B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Renal nerve stimulation method for treatment of patients
US8880186B2 (en) 2002-04-08 2014-11-04 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients with chronic heart failure
US8948865B2 (en) 2002-04-08 2015-02-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating heart arrhythmia
US10272246B2 (en) 2002-04-08 2019-04-30 Medtronic Adrian Luxembourg S.a.r.l Methods for extravascular renal neuromodulation
US8852163B2 (en) 2002-04-08 2014-10-07 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation via drugs and neuromodulatory agents and associated systems and methods
US10245429B2 (en) 2002-04-08 2019-04-02 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US8958871B2 (en) 2002-04-08 2015-02-17 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8845629B2 (en) 2002-04-08 2014-09-30 Medtronic Ardian Luxembourg S.A.R.L. Ultrasound apparatuses for thermally-induced renal neuromodulation
US8818514B2 (en) 2002-04-08 2014-08-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for intravascularly-induced neuromodulation
US10179028B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating patients via renal neuromodulation
US8983595B2 (en) 2002-04-08 2015-03-17 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients with chronic heart failure
US10179235B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US10179027B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable baskets for renal neuromodulation and associated systems and methods
US10130792B2 (en) 2002-04-08 2018-11-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation using neuromodulatory agents or drugs
US10124195B2 (en) 2002-04-08 2018-11-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8784463B2 (en) 2002-04-08 2014-07-22 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US10111707B2 (en) 2002-04-08 2018-10-30 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of human patients
US10376311B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US8986294B2 (en) 2002-04-08 2015-03-24 Medtronic Ardian Luxembourg S.a.rl. Apparatuses for thermally-induced renal neuromodulation
US10376516B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US8771252B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US7647115B2 (en) 2002-04-08 2010-01-12 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US10105180B2 (en) 2002-04-08 2018-10-23 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US8768470B2 (en) 2002-04-08 2014-07-01 Medtronic Ardian Luxembourg S.A.R.L. Methods for monitoring renal neuromodulation
US10039596B2 (en) 2002-04-08 2018-08-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatus for renal neuromodulation via an intra-to-extravascular approach
US10034708B2 (en) 2002-04-08 2018-07-31 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US9968611B2 (en) 2002-04-08 2018-05-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US9956410B2 (en) 2002-04-08 2018-05-01 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US8740896B2 (en) 2002-04-08 2014-06-03 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US9907611B2 (en) 2002-04-08 2018-03-06 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9895195B2 (en) 2002-04-08 2018-02-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9827041B2 (en) 2002-04-08 2017-11-28 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatuses for renal denervation
US9827040B2 (en) 2002-04-08 2017-11-28 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for intravascularly-induced neuromodulation
US9814873B2 (en) 2002-04-08 2017-11-14 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US9757192B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9757193B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US9743983B2 (en) 2002-04-08 2017-08-29 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US8728137B2 (en) 2002-04-08 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US7717948B2 (en) 2002-04-08 2010-05-18 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8728138B2 (en) 2002-04-08 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US9731132B2 (en) 2002-04-08 2017-08-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9707035B2 (en) 2002-04-08 2017-07-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US8934978B2 (en) 2002-04-08 2015-01-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US8721637B2 (en) 2002-04-08 2014-05-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9023037B2 (en) 2002-04-08 2015-05-05 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US8684998B2 (en) 2002-04-08 2014-04-01 Medtronic Ardian Luxembourg S.A.R.L. Methods for inhibiting renal nerve activity
US8626300B2 (en) 2002-04-08 2014-01-07 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US8620423B2 (en) 2002-04-08 2013-12-31 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermal modulation of nerves contributing to renal function
US9072527B2 (en) 2002-04-08 2015-07-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses and methods for renal neuromodulation
US10376312B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for monopolar renal neuromodulation
US10420606B2 (en) 2002-04-08 2019-09-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8551069B2 (en) 2002-04-08 2013-10-08 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for treating contrast nephropathy
US10441356B2 (en) 2002-04-08 2019-10-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation via neuromodulatory agents
US9486270B2 (en) 2002-04-08 2016-11-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US8548600B2 (en) 2002-04-08 2013-10-01 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses for renal neuromodulation and associated systems and methods
US9125661B2 (en) 2002-04-08 2015-09-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9131978B2 (en) 2002-04-08 2015-09-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9474563B2 (en) 2002-04-08 2016-10-25 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9138281B2 (en) 2002-04-08 2015-09-22 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation via catheter apparatuses having expandable baskets
US9186198B2 (en) 2002-04-08 2015-11-17 Medtronic Ardian Luxembourg S.A.R.L. Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods
US9468497B2 (en) 2002-04-08 2016-10-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9463066B2 (en) 2002-04-08 2016-10-11 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US9186213B2 (en) 2002-04-08 2015-11-17 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9456869B2 (en) 2002-04-08 2016-10-04 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9445867B1 (en) 2002-04-08 2016-09-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation via catheters having expandable treatment members
US8454594B2 (en) 2002-04-08 2013-06-04 Medtronic Ardian Luxembourg S.A.R.L. Apparatus for performing a non-continuous circumferential treatment of a body lumen
US9192715B2 (en) 2002-04-08 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal nerve blocking
US9439726B2 (en) 2002-04-08 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US8444640B2 (en) 2002-04-08 2013-05-21 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US10850091B2 (en) 2002-04-08 2020-12-01 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US9265558B2 (en) 2002-04-08 2016-02-23 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US9289255B2 (en) 2002-04-08 2016-03-22 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9314630B2 (en) 2002-04-08 2016-04-19 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US11033328B2 (en) 2002-04-08 2021-06-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9320561B2 (en) 2002-04-08 2016-04-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US8175711B2 (en) 2002-04-08 2012-05-08 Ardian, Inc. Methods for treating a condition or disease associated with cardio-renal function
US9364280B2 (en) 2002-04-08 2016-06-14 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8150520B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods for catheter-based renal denervation
US9326817B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating heart arrhythmia
US8150518B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US9327122B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10293190B2 (en) 2002-04-08 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Thermally-induced renal neuromodulation and associated systems and methods
US20100138340A1 (en) * 2002-09-19 2010-06-03 John Earl Shirey System and apparatus for transaction fraud processing
US7282030B2 (en) 2002-10-15 2007-10-16 Medtronic, Inc. Timed delay for redelivery of treatment therapy for a medical device system
US20080033508A1 (en) * 2002-10-15 2008-02-07 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
US20080064934A1 (en) * 2002-10-15 2008-03-13 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
US8579786B2 (en) 2002-10-15 2013-11-12 Medtronic, Inc. Screening techniques for management of a nervous system disorder
US20040153436A1 (en) * 2002-10-15 2004-08-05 Pope Cameron A. Automated information management system and methods
US20040158119A1 (en) * 2002-10-15 2004-08-12 Medtronic, Inc. Screening techniques for management of a nervous system disorder
US20040152958A1 (en) * 2002-10-15 2004-08-05 Medtronic, Inc. Timed delay for redelivery of treatment therapy for a medical device system
US8187181B2 (en) 2002-10-15 2012-05-29 Medtronic, Inc. Scoring of sensed neurological signals for use with a medical device system
US20040138518A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Medical device system with relaying module for treatment of nervous system disorders
US7321837B2 (en) 2002-10-15 2008-01-22 Medtronic, Inc. Synchronization and calibration of clocks for a medical device and calibrated clock
US20070100278A1 (en) * 2002-10-15 2007-05-03 Medtronic, Inc. Signal Quality Monitoring And Control For A Medical Device System
US20040138536A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
US9072832B2 (en) 2002-10-15 2015-07-07 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
US8738136B2 (en) 2002-10-15 2014-05-27 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
US7715919B2 (en) 2002-10-15 2010-05-11 Medtronic, Inc. Control of treatment therapy during start-up and during operation of a medical device system
US20060155495A1 (en) * 2002-10-15 2006-07-13 Medtronic, Inc. Synchronization and calibration of clocks for a medical device and calibrated clock
US7079977B2 (en) 2002-10-15 2006-07-18 Medtronic, Inc. Synchronization and calibration of clocks for a medical device and calibrated clock
US20040133248A1 (en) * 2002-10-15 2004-07-08 Medtronic, Inc. Channel-selective blanking for a medical device system
US20060161384A1 (en) * 2002-10-15 2006-07-20 Medtronic, Inc. Synchronization and calibration of clocks for a medical device and calibrated clock
US7976465B2 (en) 2002-10-15 2011-07-12 Medtronic, Inc Phase shifting of neurological signals in a medical device system
US7624293B2 (en) 2002-10-15 2009-11-24 Medtronic, Inc. Synchronization and calibration of clocks for a medical device and calibrated clock
US20040133119A1 (en) * 2002-10-15 2004-07-08 Medtronic, Inc. Scoring of sensed neurological signals for use with a medical device system
US20040138580A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Signal quality monitoring and control for a medical device system
US20040138647A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Cycle mode providing redundant back-up to ensure termination of treatment therapy in a medical device system
US20040138517A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Multi-modal operation of a medical device system
US7242983B2 (en) 2002-10-15 2007-07-10 Medtronic, Inc. Channel-selective blanking for a medical device system
US7146211B2 (en) 2002-10-15 2006-12-05 Medtronic, Inc. Signal quality monitoring and control for a medical device system
US8543214B2 (en) 2002-10-15 2013-09-24 Medtronic, Inc. Configuring and testing treatment therapy parameters for a medical device system
US7149572B2 (en) 2002-10-15 2006-12-12 Medtronic, Inc. Phase shifting of neurological signals in a medical device system
US20040138516A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Configuring and testing treatment therapy parameters for a medical device system
US7933646B2 (en) 2002-10-15 2011-04-26 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
US20040138711A1 (en) * 2002-10-15 2004-07-15 Medtronic, Inc. Control of treatment therapy during start-up and during operation of a medical device system
US7917206B2 (en) 2002-10-15 2011-03-29 Medtronic, Inc. Signal quality monitoring and control for a medical device system
US20070066915A1 (en) * 2002-10-15 2007-03-22 Medtronic, Inc. Phase Shifting of Neurological Signals in a Medical Device System
US8594798B2 (en) 2002-10-15 2013-11-26 Medtronic, Inc. Multi-modal operation of a medical device system
US8535222B2 (en) 2002-12-04 2013-09-17 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US8956295B2 (en) 2002-12-04 2015-02-17 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US7212864B2 (en) 2002-12-09 2007-05-01 Medtronic, Inc. Modular implantable medical device
US20040176817A1 (en) * 2002-12-09 2004-09-09 Medtronic, Inc. Modular implantable medical device
US7242982B2 (en) 2002-12-09 2007-07-10 Medtronic, Inc. Overmold for a modular implantable medical device
US20040176814A1 (en) * 2002-12-09 2004-09-09 Ruchika Singhal Overmold for a modular implantable medical device
US8397732B2 (en) 2002-12-09 2013-03-19 Medtronic, Inc. Implantation of low-profile implantable medical device
US7596408B2 (en) 2002-12-09 2009-09-29 Medtronic, Inc. Implantable medical device with anti-infection agent
US8086313B2 (en) 2002-12-09 2011-12-27 Medtronic, Inc. Implantable medical device with anti-infection agent
US20050004637A1 (en) * 2003-05-16 2005-01-06 Ruchika Singhal Explantation of implantable medical device
US7263401B2 (en) 2003-05-16 2007-08-28 Medtronic, Inc. Implantable medical device with a nonhermetic battery
US20080021511A1 (en) * 2003-05-16 2008-01-24 Medtronic, Inc. Implantable medical device with a nonhermetic battery
US7317947B2 (en) 2003-05-16 2008-01-08 Medtronic, Inc. Headset recharger for cranially implantable medical devices
US7881796B2 (en) 2003-05-16 2011-02-01 Medtronic, Inc. Implantable medical device with a nonhermetic battery
US20050004619A1 (en) * 2003-05-16 2005-01-06 Wahlstrand Carl D. Headset recharger for cranially implantable medical devices
US20050004618A1 (en) * 2003-05-16 2005-01-06 Scott Erik R. Implantable medical device with a nonhermetic battery
US8116883B2 (en) 2003-06-04 2012-02-14 Synecor Llc Intravascular device for neuromodulation
US8606356B2 (en) 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
US9014819B2 (en) 2003-09-18 2015-04-21 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
US8755907B2 (en) 2003-10-22 2014-06-17 Cvrx, Inc. Devices and methods for electrode implantation
US8560076B2 (en) 2003-10-22 2013-10-15 Cvrx, Inc. Devices and methods for electrode implantation
US8224437B2 (en) 2003-10-22 2012-07-17 Cvrx, Inc. Baroreflex activation for sedation and sleep
US8478414B2 (en) 2003-10-22 2013-07-02 Cvrx, Inc. Baroreflex activation for pain control, sedation and sleep
US8571655B2 (en) 2003-11-03 2013-10-29 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US7657312B2 (en) 2003-11-03 2010-02-02 Cardiac Pacemakers, Inc. Multi-site ventricular pacing therapy with parasympathetic stimulation
US8874211B2 (en) 2003-12-23 2014-10-28 Cardiac Pacemakers, Inc. Hypertension therapy based on activity and circadian rhythm
US7643875B2 (en) 2003-12-24 2010-01-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US10369367B2 (en) 2003-12-24 2019-08-06 Cardiac Pacemakers, Inc. System for providing stimulation pattern to modulate neural activity
US8000793B2 (en) 2003-12-24 2011-08-16 Cardiac Pacemakers, Inc. Automatic baroreflex modulation based on cardiac activity
US8457746B2 (en) 2003-12-24 2013-06-04 Cardiac Pacemakers, Inc. Implantable systems and devices for providing cardiac defibrillation and apnea therapy
US8285389B2 (en) 2003-12-24 2012-10-09 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on motion and physiological activity
US9950170B2 (en) 2003-12-24 2018-04-24 Cardiac Pacemakers, Inc. System for providing stimulation pattern to modulate neural activity
US9020595B2 (en) 2003-12-24 2015-04-28 Cardiac Pacemakers, Inc. Baroreflex activation therapy with conditional shut off
US8024050B2 (en) 2003-12-24 2011-09-20 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US7706884B2 (en) * 2003-12-24 2010-04-27 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US9265948B2 (en) 2003-12-24 2016-02-23 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity
US8473076B2 (en) 2003-12-24 2013-06-25 Cardiac Pacemakers, Inc. Lead for stimulating the baroreceptors in the pulmonary artery
US7647114B2 (en) 2003-12-24 2010-01-12 Cardiac Pacemakers, Inc. Baroreflex modulation based on monitored cardiovascular parameter
US9440078B2 (en) 2003-12-24 2016-09-13 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
US11154716B2 (en) 2003-12-24 2021-10-26 Cardiac Pacemakers, Inc. System for providing stimulation pattern to modulate neural activity
US8442640B2 (en) 2003-12-24 2013-05-14 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
US8131373B2 (en) 2003-12-24 2012-03-06 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US8805513B2 (en) 2003-12-24 2014-08-12 Cardiac Pacemakers, Inc. Neural stimulation modulation based on monitored cardiovascular parameter
US20100274321A1 (en) * 2003-12-24 2010-10-28 Imad Libbus Baroreflex activation therapy with conditional shut off
US8805501B2 (en) 2003-12-24 2014-08-12 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US8818513B2 (en) 2003-12-24 2014-08-26 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
US8626301B2 (en) 2003-12-24 2014-01-07 Cardiac Pacemakers, Inc. Automatic baroreflex modulation based on cardiac activity
US8195289B2 (en) 2003-12-24 2012-06-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US20050149132A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Automatic baroreflex modulation based on cardiac activity
US20050149126A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Baroreflex stimulation to treat acute myocardial infarction
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
US7460906B2 (en) 2003-12-24 2008-12-02 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US9561373B2 (en) 2003-12-24 2017-02-07 Cardiac Pacemakers, Inc. System to stimulate a neural target and a heart
US8639322B2 (en) 2003-12-24 2014-01-28 Cardiac Pacemakers, Inc. System and method for delivering myocardial and autonomic neural stimulation
US8121693B2 (en) 2003-12-24 2012-02-21 Cardiac Pacemakers, Inc. Baroreflex stimulation to treat acute myocardial infarction
US8126560B2 (en) 2003-12-24 2012-02-28 Cardiac Pacemakers, Inc. Stimulation lead for stimulating the baroreceptors in the pulmonary artery
US20050245971A1 (en) * 2004-04-28 2005-11-03 Brockway Brian P Implantable medical devices and related methods
US7596399B2 (en) 2004-04-29 2009-09-29 Medtronic, Inc Implantation of implantable medical device
US8280478B2 (en) 2004-04-29 2012-10-02 Medtronic, Inc. Evaluation of implantation site for implantation of implantable medical device
US9162072B2 (en) 2004-04-30 2015-10-20 Medtronic, Inc. Implantable medical device with lubricious material
US20050288729A1 (en) * 2004-06-08 2005-12-29 Imad Libbus Coordinated therapy for disordered breathing including baroreflex modulation
US8442638B2 (en) 2004-06-08 2013-05-14 Cardiac Pacemakers, Inc. Adaptive baroreflex stimulation therapy for disordered breathing
US9872987B2 (en) 2004-06-08 2018-01-23 Cardiac Pacemakers, Inc. Method and system for treating congestive heart failure
US7596413B2 (en) 2004-06-08 2009-09-29 Cardiac Pacemakers, Inc. Coordinated therapy for disordered breathing including baroreflex modulation
US7747323B2 (en) 2004-06-08 2010-06-29 Cardiac Pacemakers, Inc. Adaptive baroreflex stimulation therapy for disordered breathing
US20060004417A1 (en) * 2004-06-30 2006-01-05 Cvrx, Inc. Baroreflex activation for arrhythmia treatment
US20070156198A1 (en) * 2004-06-30 2007-07-05 Cvrx, Inc. Coordinated therapy for disordered breathing including baroreflex modulation
US10537734B2 (en) 2004-10-05 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US8805545B2 (en) 2004-10-05 2014-08-12 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US9950161B2 (en) 2004-10-05 2018-04-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US8433423B2 (en) 2004-10-05 2013-04-30 Ardian, Inc. Methods for multi-vessel renal neuromodulation
US9402992B2 (en) 2004-10-05 2016-08-02 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US9108040B2 (en) 2004-10-05 2015-08-18 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20090030485A1 (en) * 2004-12-16 2009-01-29 Advanced Bionics, Llc Estimating Flap Thickness For Cochlear Implants
US7920924B2 (en) 2004-12-16 2011-04-05 Advanced Bionics, Llc Estimating flap thickness for cochlear implants
US7450994B1 (en) 2004-12-16 2008-11-11 Advanced Bionics, Llc Estimating flap thickness for cochlear implants
US20110143648A1 (en) * 2005-01-06 2011-06-16 Oy Halton Group Ltd. Automatic displacement ventilation system with heating mode
US20060184204A1 (en) * 2005-02-11 2006-08-17 Advanced Bionics Corporation Implantable microstimulator having a separate battery unit and methods of use thereof
US8060215B2 (en) 2005-02-11 2011-11-15 Boston Scientific Neuromodulation Corporation Implantable microstimulator having a battery unit and methods of use therefor
US7840279B2 (en) 2005-02-11 2010-11-23 Boston Scientific Neuromodulation Corporation Implantable microstimulator having a separate battery unit and methods of use thereof
US8131362B2 (en) 2005-03-11 2012-03-06 Cardiac Pacemakers, Inc. Combined neural stimulation and cardiac resynchronization therapy
US20080140167A1 (en) * 2005-05-19 2008-06-12 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US7395119B2 (en) 2005-05-19 2008-07-01 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US20070276442A1 (en) * 2005-05-19 2007-11-29 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US7962222B2 (en) * 2005-12-07 2011-06-14 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
US9687663B2 (en) 2005-12-07 2017-06-27 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
US10118045B2 (en) 2005-12-07 2018-11-06 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
US10974055B2 (en) 2005-12-07 2021-04-13 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
US20070129768A1 (en) * 2005-12-07 2007-06-07 Advanced Bionics Corporation Battery Protection and Zero-Volt Battery Recovery System for an Implantable Medical Device
US20070142879A1 (en) * 2005-12-20 2007-06-21 The Cleveland Clinic Foundation Apparatus and method for modulating the baroreflex system
US9044188B2 (en) 2005-12-28 2015-06-02 Cyberonics, Inc. Methods and systems for managing epilepsy and other neurological disorders
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US9592004B2 (en) 2005-12-28 2017-03-14 Cyberonics, Inc. Methods and systems for managing epilepsy and other neurological disorders
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US9949668B2 (en) 2006-01-10 2018-04-24 Cardiac Pacemakers, Inc. Assessing autonomic activity using baroreflex analysis
US8109879B2 (en) 2006-01-10 2012-02-07 Cardiac Pacemakers, Inc. Assessing autonomic activity using baroreflex analysis
US8326431B2 (en) 2006-04-28 2012-12-04 Medtronic, Inc. Implantable medical device for the concurrent treatment of a plurality of neurological disorders and method therefore
US20070255323A1 (en) * 2006-04-28 2007-11-01 Medtronic, Inc. Implantable medical device for the concurrent treatment of a plurality of neurological disorders and method therefore
US9084901B2 (en) 2006-04-28 2015-07-21 Medtronic, Inc. Cranial implant
US9504402B2 (en) 2006-04-28 2016-11-29 Medtronic, Inc. Cranial implant
US9452286B2 (en) 2006-06-20 2016-09-27 Ebr Systems, Inc. Systems and methods for implantable leadless tissue stimulation
US20110118810A1 (en) * 2006-06-20 2011-05-19 Ebr Systems, Inc. Systems and methods for implantable leadless nerve stimulation
US10143850B2 (en) 2006-06-20 2018-12-04 Ebr Systems, Inc. Systems and methods for implantable leadless tissue stimulation
US7894907B2 (en) 2006-06-20 2011-02-22 Ebr Systems, Inc. Systems and methods for implantable leadless nerve stimulation
US20070293906A1 (en) * 2006-06-20 2007-12-20 Ebr Systems, Inc. Systems and methods for implantable leadless nerve stimulation
US8494643B2 (en) 2006-06-20 2013-07-23 Ebr Systems, Inc. Systems and methods for implantable leadless nerve stimulation
US7676263B2 (en) 2006-06-23 2010-03-09 Neurovista Corporation Minimally invasive system for selecting patient-specific therapy parameters
US9480845B2 (en) 2006-06-23 2016-11-01 Cyberonics, Inc. Nerve stimulation device with a wearable loop antenna
US8855775B2 (en) 2006-11-14 2014-10-07 Cyberonics, Inc. Systems and methods of reducing artifact in neurological stimulation systems
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US9622675B2 (en) 2007-01-25 2017-04-18 Cyberonics, Inc. Communication error alerting in an epilepsy monitoring system
US9898656B2 (en) 2007-01-25 2018-02-20 Cyberonics, Inc. Systems and methods for identifying a contra-ictal condition in a subject
US20110213222A1 (en) * 2007-01-25 2011-09-01 Leyde Kent W Communication Error Alerting in an Epilepsy Monitoring System
US9445730B2 (en) 2007-03-21 2016-09-20 Cyberonics, Inc. Implantable systems and methods for identifying a contra-ictal condition in a subject
US8543199B2 (en) 2007-03-21 2013-09-24 Cyberonics, Inc. Implantable systems and methods for identifying a contra-ictal condition in a subject
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US8594794B2 (en) 2007-07-24 2013-11-26 Cvrx, Inc. Baroreflex activation therapy with incrementally changing intensity
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US11406317B2 (en) 2007-12-28 2022-08-09 Livanova Usa, Inc. Method for detecting neurological and clinical manifestations of a seizure
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US8369954B2 (en) 2008-03-27 2013-02-05 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US20110166482A1 (en) * 2008-03-27 2011-07-07 Stack Richard S System and method for transvascularly stimulating contents of the carotid sheath
US9572982B2 (en) 2008-04-30 2017-02-21 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US9561369B2 (en) 2008-04-30 2017-02-07 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US8532793B2 (en) 2008-04-30 2013-09-10 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US8315713B2 (en) 2008-04-30 2012-11-20 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US20090276025A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US20090275956A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US20090276022A1 (en) * 2008-04-30 2009-11-05 Medtronic , Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US20090275996A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Techniques for placing medical leads for electrical stimulation of nerve tissue
US8473057B2 (en) 2008-10-31 2013-06-25 Medtronic, Inc. Shunt-current reduction housing for an implantable therapy system
US20100114200A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8249708B2 (en) 2008-10-31 2012-08-21 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114198A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8774918B2 (en) 2008-10-31 2014-07-08 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US9026206B2 (en) 2008-10-31 2015-05-05 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US9775987B2 (en) 2008-10-31 2017-10-03 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8688210B2 (en) 2008-10-31 2014-04-01 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8611996B2 (en) 2008-10-31 2013-12-17 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114201A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114208A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114197A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8560060B2 (en) 2008-10-31 2013-10-15 Medtronic, Inc. Isolation of sensing and stimulation circuitry
US8532779B2 (en) 2008-10-31 2013-09-10 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8005539B2 (en) 2008-10-31 2011-08-23 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114202A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114205A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Shunt-current reduction housing for an implantable therapy system
US8527045B2 (en) 2008-10-31 2013-09-03 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US20100114199A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US9393432B2 (en) 2008-10-31 2016-07-19 Medtronic, Inc. Non-hermetic direct current interconnect
US20100114224A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114221A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US8498698B2 (en) 2008-10-31 2013-07-30 Medtronic, Inc. Isolation of sensing and stimulation circuitry
US20100114211A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Shunt-current reduction techniques for an implantable therapy system
US9597505B2 (en) 2008-10-31 2017-03-21 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US9192769B2 (en) 2008-10-31 2015-11-24 Medtronic, Inc. Shunt-current reduction techniques for an implantable therapy system
US8452394B2 (en) 2008-10-31 2013-05-28 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US8260412B2 (en) 2008-10-31 2012-09-04 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US20100114217A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Therapy system including cardiac rhythm therapy and neurostimulation capabilities
US20100114203A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Implantable medical device crosstalk evaluation and mitigation
US9353733B2 (en) 2008-12-04 2016-05-31 Deep Science, Llc Device and system for generation of power from intraluminal pressure changes
US20100140958A1 (en) * 2008-12-04 2010-06-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for powering devices from intraluminal pressure changes
US9526418B2 (en) * 2008-12-04 2016-12-27 Deep Science, Llc Device for storage of intraluminally generated power
US20100140943A1 (en) * 2008-12-04 2010-06-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Device for storage of intraluminally generated power
US9567983B2 (en) 2008-12-04 2017-02-14 Deep Science, Llc Method for generation of power from intraluminal pressure changes
US20100140957A1 (en) * 2008-12-04 2010-06-10 Searete Llc Method for generation of power from intraluminal pressure changes
US20100140956A1 (en) * 2008-12-04 2010-06-10 Searete Llc. Method for generation of power from intraluminal pressure changes
US9631610B2 (en) * 2008-12-04 2017-04-25 Deep Science, Llc System for powering devices from intraluminal pressure changes
US20100141052A1 (en) * 2008-12-04 2010-06-10 Searete Llc,A Limited Liability Corporation Of The State Of Delaware System for powering devices from intraluminal pressure changes
US9759202B2 (en) * 2008-12-04 2017-09-12 Deep Science, Llc Method for generation of power from intraluminal pressure changes
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US10537385B2 (en) 2008-12-31 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility
US10561460B2 (en) 2008-12-31 2020-02-18 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation systems and methods for treatment of sexual dysfunction
US9289595B2 (en) 2009-01-09 2016-03-22 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
US10179020B2 (en) 2010-10-25 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US9855438B2 (en) 2011-07-20 2018-01-02 Boston Scientific Neuromodulation Corporation Battery management for an implantable medical device
US9393433B2 (en) 2011-07-20 2016-07-19 Boston Scientific Neuromodulation Corporation Battery management for an implantable medical device
US10874455B2 (en) 2012-03-08 2020-12-29 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US11338140B2 (en) 2012-03-08 2022-05-24 Medtronic Ardian Luxembourg S.A.R.L. Monitoring of neuromodulation using biomarkers
US10080864B2 (en) 2012-10-19 2018-09-25 Medtronic Ardian Luxembourg S.A.R.L. Packaging for catheter treatment devices and associated devices, systems, and methods
US9814882B2 (en) 2014-02-14 2017-11-14 Boston Scientific Neuromodulation Corporation Rechargeable-battery implantable medical device having a primary battery active during a rechargeable-battery undervoltage condition
US9345883B2 (en) 2014-02-14 2016-05-24 Boston Scientific Neuromodulation Corporation Rechargeable-battery implantable medical device having a primary battery active during a rechargeable-battery undervoltage condition
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation

Similar Documents

Publication Publication Date Title
US3522811A (en) Implantable nerve stimulator and method of use
US3867950A (en) Fixed rate rechargeable cardiac pacemaker
US5211175A (en) Method for implanting electra-acupuncture needle
US6659936B1 (en) Method and apparatus for treating incontinence
US5094242A (en) Implantable nerve stimulation device
US6907285B2 (en) Implantable defibrillartor with wireless vascular stent electrodes
US7899539B2 (en) Cavernous nerve stimulation via unidirectional propagation of action potentials
Glenn et al. Electrical stimulation of excitable tissue by radio-frequency transmission
US7519421B2 (en) Vagal nerve stimulation using vascular implanted devices for treatment of atrial fibrillation
US7292890B2 (en) Vagus nerve stimulation via unidirectional propagation of action potentials
US20030018365A1 (en) Method and apparatus for the treatment of urinary tract dysfunction
US20120316622A1 (en) Implantable microstimulators with programmable multielectrode configuration and uses thereof
US20100292527A1 (en) Device and method for hypertension treatment by non-invasive stimulation to vascular baroreceptors
EP0500552A4 (en) Nausea control device
SE9603635D0 (en) Implantable stimulator
EP2015836A1 (en) A method and apparatus for managing erectile dysfunction
FURMAN et al. Rechargeable pacemaker for direct myocardial implantation
EP3993865A1 (en) Neural block by super-threshold low frequency electrical stimulation
KR100844119B1 (en) Implantable pulse generator and pacemaker using thereof
AU2005204340B8 (en) Method and apparatus for treating incontinence
AU781755B2 (en) Method and apparatus for treating incontinence
Becerra Fajardo Microcontrolled injectable stimulators based on electronic rectification of high frequency current bursts