US3794022A - Dual oscillator, variable pulse duration electrotherapeutic device - Google Patents

Dual oscillator, variable pulse duration electrotherapeutic device Download PDF

Info

Publication number
US3794022A
US3794022A US00267956A US3794022DA US3794022A US 3794022 A US3794022 A US 3794022A US 00267956 A US00267956 A US 00267956A US 3794022D A US3794022D A US 3794022DA US 3794022 A US3794022 A US 3794022A
Authority
US
United States
Prior art keywords
pulses
voltage pulses
square wave
oscillating
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00267956A
Inventor
H Greit
E Nawracaj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3794022A publication Critical patent/US3794022A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/323Interference currents, i.e. treatment by several currents summed in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems

Definitions

  • ABSTRACT A first multi-vibrator produces square wave pulses of constant voltage for a second period with a three second off interval in between each pulse.
  • the 15 second pulses are converted into ramp pulses of the same period and interval.
  • the ramp pulses are used to control a second multivibrator which produces a series of constant voltage square wave pulses during the 15 second period.
  • Each succeeding square wave pulse during the 15 second period is of a slightly longer duration so that there is a constant increase in the time duration of the square wave pulses during each 15 second period.
  • the cycle is repeated after the 3 second off interval between the 15 second pulse periods.
  • the varying square wave pulses are used to trigger separate 4KHZ and 61(HZ voltage oscillators.
  • Each oscillator produces output pulses at their respective frequencies of the same duration and interval as the square wave inputs.
  • the frequency pulses are amplified by separate amplifiers and'the amplified pulses are applied by a body probe to the patient.
  • Zener diodes are provided at the output of each amplifiers to limit the maximum possible voltage that may be applied to the patient.
  • the stimulating effect of therapeutic electrical current is dependent on the form of the individual impulses and the frequency and intensity of the pulses. Furthermore, it is a well-known phenomenon of human physiology that a constant application of a sensoral stimuli to the nervous system has the effect of desensitizing the nerves over a period of time. Consequently, if the purpose of the electrotherapeutic device is to produce an anaesthesia of a particular portion of the body, a constant unvarying electrotherapeutic current should be applied to the area. However, where it is desired to limit the desensitization of the area to be treated, a constantly varying electrothera-' Treatmentic impulse should be applied to the area to be treated.
  • An electrotherapeutic device for applying therapeutic electrical currents to the body of a patient com prises pulse producing means for producing a series of square wave voltage pulses during a repeating predetermined time period, each predetermined period being time separated by a predetermined time interval. Each succeeding square wave voltage pulse during each predetermined period being of a longer time duration than the preceding square wave voltage pulse. Thus a repeating series of time duration increasing pulses is-produced during each predetermined period.
  • Control means are included for controlling the magnitude of the square wave voltage pulses.
  • a first oscillator means is provided for receiving the square wave voltage pulses and producing first output oscillating pulses in response to the input of the square wave voltage pulses.
  • the first output oscillating pulses are of an oscillating frequency of a predetermined first oscillating frequency and have a time duration and repeating predetermined period corresponding to the time duration and repeating pre determined period of the square wave voltage pulses.
  • a second oscillator means for receiving the square wave voltage pulses and producing second output oscillating pulses in response to the receipt of the square voltage pulses.
  • the second output oscillating pulses are of a second frequency different from the frequency of the first output oscillating pulses.
  • the time duration and repeating predetemiined period of the second output oscillating pulses corresponds to the time duration and repeating predetermined period of the square voltage pulses.
  • Separate first and second amplifying means are provided for receiving and amplifying the first and second output oscillating pulses respectively.
  • Probe means are provided for applying the amplified first and second output oscillating pulses the body of the patient.
  • Voltage sensitive means may also be connected to the first and second amplifier means for preventing the magnitude of the amplified first and second oscillating voltage pulses from exceeding a predetermined maximum voltage.
  • audio monitor means may be connected to the first and second oscillator means to produce an audibly perceptible means of monitoring the output of the present invention.
  • visual indicating means may also be utilized to visually indicate the magnitude of the oscillating voltage pulses as applied to the patient.
  • an electrotherapeutic device which applies separate voltage currents of separate frequencies to the body of the patient by a series of pulses of varying duration during a predetermined period.
  • Another object of the present invention is to provide an electrotherapeutic apparatus having a voltage sensitive device connected to the output of the amplifying means to prevent the output from exceeding a maximum predetermined magnitude to protect the patient from dangerous levels of electrical'current.
  • Yet another object of the present invention is to provide an electrotherapeutic device having both visual and aubible means for monitoring the output of electrical current applied to the patient.
  • the drawing is a schematic drawing of a preferred embodiment of the present invention.
  • an electrotherapeutic device for applying therapeutic electric current to the body of a patient comprises a first multi-vibrator which produces a multiplicity of constant voltage signals of a predetermined time period. Each of the multiplicity of voltage signals is separated by a predetermined off interval.
  • multi-vibrator 10 is a visual representation of the output of multivibrator 10 with time being the horizontal axis and voltage being the vertical axis.
  • the predetermined interval between the constant voltage signals is represented by the symbol T
  • the constant voltage signals from multi-vibrator 10 are applied to an integrator circuit 12 which converts the constant voltage signal into ramp" pulses of constantly increasing voltage from zero voltage to voltage V of the constant voltage signal provided by multivibrator l0.
  • integrator circuit 12 Immediately above integrator circuit 12 in the drawing is a visual representation of the ramp pulses produced by integrator 12.
  • the ramp pulses from integrator 12 are then applied to a second multi-vibrator 14.
  • the ramp pulses from integrator circuit 12 are used to control multi-vibrator 14 so that multi-vibrator 14 produces a series of square wave pulses during the predetermined time period T
  • Each succeeding square wave pulse during the predetermined time period T is of an increasing time duration.
  • a repeating series of time duration increasing square wave pulses is produced by multi-vibrator 14 during each predetermined period T,.
  • a visual represenation of the square wave pulses produced by multi-vibrator 14 is illustrated in the diagram immediately above multi-vibrator 14 in the drawing.
  • variable voltage divider 16 is utilized to provide a control means for controlling the magnitude of the square wave voltage pulses applied to first voltage oscillator 18 and second voltage oscillator 20.
  • a meter 22 is provided at the output of variable voltage divider 16 which visually indicates the magnitude of the output of the square wave voltage pulses from variable voltage divider 16.
  • First and second voltage oscillators 18 and 20 are either conventional variable frequency or set frequency voltage oscillators. Typically, first voltage oscillator 18 produces a 4KHZ frequency output and second voltage oscillator 20 produces a 6KHZ frequency output.
  • the input of the square wave voltage pulses from variable voltage divider l6 triggers the operation of first voltage oscillator 18 and second voltage oscillator 20 respectively to produce oscillating pulses of the same time duration as the input square wave pulses.
  • the output pulses of first and second voltage oscillators l8 and 20 comprise oscillating signals of for example 4 and 6 KHZ in the same pulse duration relationship during the predetermined time period T, as the square wave voltage pulses produced by second multi-vibrator 14.
  • the magnitude of the output oscillating signals of first and second voltage oscillators 18 and 20 is controlled by the magnitude of the pulses applied by variable voltage divider 16.
  • monitoring amplifier 22 Also connected to first and second voltage oscillators 18 and 20 is a monitoring amplifier 22. Connected to monitoring amplifier 22 is a speaker 24. Monitoring amplifier 22 and speaker 24 provide an audible means of monitoring the output of first and second voltage oscillators 18 and 20.
  • first and second voltage oscillators 18 and 20 are connected to first and second power amplifiers 26 and 28 respectively.
  • First and second power amplifiers 26 and 28 amplify the respective oscillating voltage signals applied from the first and second voltage oscillators I8 and 20.
  • the output of first and second power amplifier 26 and 28 are connected to electrodes 30 of body probe 32.
  • Body probe 32 is applied to the portion of the body of the patient to which the electrotherapeutic current is to be applied.
  • Zener diodes 34 and 36 Connected to the output of third and fourth power amplifier 26 and 28 are Zener diodes 34 and 36.
  • Zener diodes 34 and 36 are connected to ground and are voltage sensitive devices which switch from a very high impedance to a very low impedance after a predetermined voltage level has been exceeded.
  • the Zener diodes 34 and 36 switch to a low impedance thus preventing the output of first and second voltage amplifiers 26 and 28 from exceeding switching voltage of Zener diodes 34 and 36. In this manner the application of a dangerous level of voltage to the body of the patient is prevented.
  • a new and improved electrotherapeutic device for applying therapeutic electric currents to the body of a patient has been provided.
  • This device provides additional advantages over the prior art electrotherapeutic devices since it applies two separate high frequency currents to the body of the patient by time duration increasing pulses during a predetermined interval of time. These time duration increasing pulses are repeated after a predetermined off interval (designated T in the drawing), and the series of pulses is continued.
  • T predetermined off interval
  • An electrotherapeutic device for applying therapeutic electrical currents to the body of a patient comprising:
  • first multi-vibrator means for producing a multiplicity of constant voltage signals of a predetermined time period, each of said multiplicity of voltage signals being separated by a predetermined time interval;
  • integrator means for receiving and converting each of said multiplicity of constant voltage signals into a corresponding ramp pulse having an increasing voltage magnitude during the predetermined period
  • second multi-vibrator means for receiving and converting each of said ramp pulses into a multiplicity of separate square wave voltage pulses, the time duration of each of said square wave voltage pulses increasing proportionately during said predetermined period;
  • control means for controlling the magnitude of said square wave voltage pulses
  • first oscillator means for receiving said square wave voltage pulses and converting said square wave voltage pulses into first oscillating voltage pulses having a first frequency, said first oscillating voltage pulses having the same proportionally increasing time duration as said square wave voltage pulses;
  • second oscillator means for receiving said square wave voltage pulses and converting said square voltage pulses into second oscillating voltage pulses having a second frequency, said second oscillating voltage pulses having the same proportionally increasing time duration as said square wave voltage pulses,
  • first amplifier means for receiving and amplifying said first oscillating voltage pulses
  • second amplifier means for receiving amd amplifying said second oscillating voltage pulses
  • probe means for receiving said amplified first and said second oscillating voltage pulses from the first and second amplifying means respectively and applying said first and second amplified oscillating voltage pulses to the body of the patient.
  • An electrotherapeutic device as claimed in claim 1 further comprising voltage sensitive means connected to said first and second amplifier means for preventing the magnitude of the amplified first and second oscillating voltage pulses from exceeding a predetermined maximum voltage.
  • An electrotherapeutic device as claimed in claim 1 further comprising visual indicating means to visually indicate the magnitude of the oscillating voltage pulses applied to the probe means.
  • An electrotherapeutic device as claimed in claim 1 further comprising audio monitor means connected to said first and second oscillator means, said audio means for reproducing audible perceptible pulses of a frequency corresponding to the frequency of said first and second oscillating voltage pulses.
  • a first pair of body contacts connected to said first amplifier means for receiving said first oscillating voltage pulses and applying said first oscillating voltage pulses to the body of the patient;
  • a second pair of body contacts connected to said second amplifier means for receiving said second oscillating voltage pulses and applying said second oscillating voltage pulses to the body of the patient.
  • said voltage sensitive means comprises a first Zener diode connected from said first amplifier means to a ground; and a second Zener diode connected from said second amplifier means to a ground.

Abstract

A first multi-vibrator produces square wave pulses of constant voltage for a 15 second period with a three second ''''off'''' interval in between each pulse. The 15 second pulses are converted into ramp pulses of the same period and interval. The ramp pulses are used to control a second multivibrator which produces a series of constant voltage square wave pulses during the 15 second period. Each succeeding square wave pulse during the 15 second period is of a slightly longer duration so that there is a constant increase in the time duration of the square wave pulses during each 15 second period. The cycle is repeated after the 3 second ''''off'''' interval between the 15 second pulse periods. The varying square wave pulses are used to trigger separate 4KHZ and 6KHZ voltage oscillators. Each oscillator produces output pulses at their respective frequencies of the same duration and interval as the square wave inputs. The frequency pulses are amplified by separate amplifiers and the amplified pulses are applied by a body probe to the patient. Zener diodes are provided at the output of each amplifiers to limit the maximum possible voltage that may be applied to the patient.

Description

United States Patent [191 Nawracaj et al.
[ Feb. 26, 1974 DUAL OSCILLATOR, VARIABLE PULSE DURATION ELECTROTHERAPEUTIC DEVICE [76] Inventors: Edward P. Nawracaj, 3914 W. 47th St., Chicago, 111. 60632; Henry Greit, 3527 W. 80th St., Chicago, 11]. 60652 [22] Filed: June 30, 1972 211 App]. No.: 267,956-
[52] US. Cl. 128/422, 128/420 [51] Int. Cl A6ln 1/36 [58] Field of Search... 128/419, 420, 421, 422, 423,
[56] References Cited UNITED STATES PATENTS 3,204,637 9/1965 Frank et a1. 128/423 2,700,975 2/1955 Hepfingcr et al.. 128/421 3,431,912 3/1969 Keller, .lr. 128/422 3,489,152 l/1970 Barbara 128/422 2,622,601 12/1952 Nemec 128/422 Primary Examiner-William E. Kamm Attorney Agent, r FirmKirkland & Ellis ELI, ttsEc) vii.)
[5 7] ABSTRACT A first multi-vibrator produces square wave pulses of constant voltage for a second period with a three second off interval in between each pulse. The 15 second pulses are converted into ramp pulses of the same period and interval. The ramp pulses are used to control a second multivibrator which produces a series of constant voltage square wave pulses during the 15 second period. Each succeeding square wave pulse during the 15 second period is of a slightly longer duration so that there is a constant increase in the time duration of the square wave pulses during each 15 second period. The cycle is repeated after the 3 second off interval between the 15 second pulse periods. The varying square wave pulses are used to trigger separate 4KHZ and 61(HZ voltage oscillators. Each oscillator produces output pulses at their respective frequencies of the same duration and interval as the square wave inputs. The frequency pulses are amplified by separate amplifiers and'the amplified pulses are applied by a body probe to the patient. Zener diodes are provided at the output of each amplifiers to limit the maximum possible voltage that may be applied to the patient.
6 Claims, 1 Drawing Figure vttl vltl imussol I llll lt.h l lz.-l1 lt,'lt l VARIABLE MULTIVIBRATOR g 5 MULTIVIBRATOR VOLTAGE DIVIDER Va) T /8 l m 1| lllllll 11 ll 26 z t VOLTAGE POWER F OSCILLATOR AMP MONITOR AMP SPEQKER T VOLTAGE l POWER OSCILLATOR AMP DUAL OSCILLATOR, VARIABLE PULSE DURATION ELECTROTIIERAPEUTIC DEVICE BACKGROUND OF THE INVENTION Field of thelnvention This invention relates to electrotherapeutic devices, and more particularly to apparatus for applying two separate frequencies of electrotherapeutic currents to the body of the patient each of said frequency currents being applied as a repeating series of pulses of increasing duration during a predetermined period.
DESCRIPTION OF THE PRIOR ART From the earliest times of electrical knowledge, the response of organic tissue to the stimulus of electric current has been known. The first detailed scientific investigation of these effects was performed in Italy by Luigi Galvani, professor of anatomy at the University of Bologna. Due to the primitive state of development of electrical equipment in this era, his work was of necessity limited to application of steady-state DC and very low frequency (manually pulsed) AC. Galvani also observed and investigated the effects upon organic tissue of the induced energy resulting from the spark discharge of a nearby electrostatic generator, such discharges being largely oscillatory in nature and containing components of several frequencies.
Many studies were performed during the 19th century by many workers involving the application of electrical currents to the human body for medical purposes, with such studies being devoted to the effects of various intensities, frequencies, directions of current flow, and electrode arrangement. Various apparatus for applying electrotherapeutic currents to the body of a patient have been developed. For example, U. S. Pat. No. 1,425,743 Baruch which issued in 1922 covered an apparatus which produced an alternating electrostatic field of a plurality of different frequencies so that a heterodyne effect was produced within the tissue of the patient. Similarly, French Patent No. 859,618 published Dec. 23, 1940 describes an electrotherapeutic method which comprises the application to the body of two high frequency currents which intersect within the tissue of the patient so that upon intersection, a beat frequency equal to the difference between the two high frequencies resulted and was experienced by the patient. Similar heterodyne effect electrotherapeutic devices have been developed. For example, U. S. Pat. No. 2,622,601 Nemec and U. S. Pat. No. 3,096,768 Griffith disclose electrotherapeutic devices for producing and applying two separate signals of different frequencies to the body of the patient to produce heterodyne beat frequency sensation.
As is well known in the art, the stimulating effect of therapeutic electrical current is dependent on the form of the individual impulses and the frequency and intensity of the pulses. Furthermore, it is a well-known phenomenon of human physiology that a constant application of a sensoral stimuli to the nervous system has the effect of desensitizing the nerves over a period of time. Consequently, if the purpose of the electrotherapeutic device is to produce an anaesthesia of a particular portion of the body, a constant unvarying electrotherapeutic current should be applied to the area. However, where it is desired to limit the desensitization of the area to be treated, a constantly varying electrothera-' peutic impulse should be applied to the area to be treated.
Further, to provide maximum therapeutic results, it is often desirable to apply various frequencies of electrotherapeutic current to the body of the patient. However, rather than utilizing the heterodyne effect between two frequencies to create a low frequency sensation to the patient, essentially the same sensation may be created by applying pulsed currents of a very low frequency.
SUMMARY OF THE INVENTION An electrotherapeutic device for applying therapeutic electrical currents to the body of a patient com prises pulse producing means for producing a series of square wave voltage pulses during a repeating predetermined time period, each predetermined period being time separated by a predetermined time interval. Each succeeding square wave voltage pulse during each predetermined period being of a longer time duration than the preceding square wave voltage pulse. Thus a repeating series of time duration increasing pulses is-produced during each predetermined period. Control means are included for controlling the magnitude of the square wave voltage pulses. A first oscillator means is provided for receiving the square wave voltage pulses and producing first output oscillating pulses in response to the input of the square wave voltage pulses. The first output oscillating pulses are of an oscillating frequency of a predetermined first oscillating frequency and have a time duration and repeating predetermined period corresponding to the time duration and repeating pre determined period of the square wave voltage pulses. Also provided is a second oscillator means for receiving the square wave voltage pulses and producing second output oscillating pulses in response to the receipt of the square voltage pulses. The second output oscillating pulses are of a second frequency different from the frequency of the first output oscillating pulses. The time duration and repeating predetemiined period of the second output oscillating pulses corresponds to the time duration and repeating predetermined period of the square voltage pulses. Separate first and second amplifying means are provided for receiving and amplifying the first and second output oscillating pulses respectively. Probe means are provided for applying the amplified first and second output oscillating pulses the body of the patient.
Voltage sensitive means may also be connected to the first and second amplifier means for preventing the magnitude of the amplified first and second oscillating voltage pulses from exceeding a predetermined maximum voltage. Thus, patient safety is assured. In addition, audio monitor means may be connected to the first and second oscillator means to produce an audibly perceptible means of monitoring the output of the present invention. Further, visual indicating means may also be utilized to visually indicate the magnitude of the oscillating voltage pulses as applied to the patient.
Accordingly, it is an important object of this invention to provide an electrotherapeutic device which applies separate voltage currents of separate frequencies to the body of the patient by a series of pulses of varying duration during a predetermined period.
Another object of the present invention is to provide an electrotherapeutic apparatus having a voltage sensitive device connected to the output of the amplifying means to prevent the output from exceeding a maximum predetermined magnitude to protect the patient from dangerous levels of electrical'current.
Yet another object of the present invention is to provide an electrotherapeutic device having both visual and aubible means for monitoring the output of electrical current applied to the patient.
These and other objects, advantages, and features of the subject invention will hereinafter appear, and for the purposes of illustration, but not of limitation, exemplary embodiments of the present invention are illustrated in the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING The drawing is a schematic drawing of a preferred embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION As shown in the drawing, an electrotherapeutic device for applying therapeutic electric current to the body of a patient comprises a first multi-vibrator which produces a multiplicity of constant voltage signals of a predetermined time period. Each of the multiplicity of voltage signals is separated by a predetermined off interval. Immediately above multi-vibrator 10 is a visual representation of the output of multivibrator 10 with time being the horizontal axis and voltage being the vertical axis. The magnitude of the volt age being represented by the symbol V and the predetermined time period of the constant voltage signal being represented by the symbol T The predetermined interval between the constant voltage signals is represented by the symbol T The constant voltage signals from multi-vibrator 10 are applied to an integrator circuit 12 which converts the constant voltage signal into ramp" pulses of constantly increasing voltage from zero voltage to voltage V of the constant voltage signal provided by multivibrator l0. Immediately above integrator circuit 12 in the drawing is a visual representation of the ramp pulses produced by integrator 12.
The ramp pulses from integrator 12 are then applied to a second multi-vibrator 14. The ramp pulses from integrator circuit 12 are used to control multi-vibrator 14 so that multi-vibrator 14 produces a series of square wave pulses during the predetermined time period T Each succeeding square wave pulse during the predetermined time period T is of an increasing time duration. Thus, a repeating series of time duration increasing square wave pulses is produced by multi-vibrator 14 during each predetermined period T,. A visual represenation of the square wave pulses produced by multi-vibrator 14 is illustrated in the diagram immediately above multi-vibrator 14 in the drawing.
The square wave voltage pulses are then applied to a variable voltage divider 16. Variable voltage divider 16 is utilized to provide a control means for controlling the magnitude of the square wave voltage pulses applied to first voltage oscillator 18 and second voltage oscillator 20. Provided at the output of variable voltage divider 16 is a meter 22 which visually indicates the magnitude of the output of the square wave voltage pulses from variable voltage divider 16.
First and second voltage oscillators 18 and 20 are either conventional variable frequency or set frequency voltage oscillators. Typically, first voltage oscillator 18 produces a 4KHZ frequency output and second voltage oscillator 20 produces a 6KHZ frequency output. The input of the square wave voltage pulses from variable voltage divider l6 triggers the operation of first voltage oscillator 18 and second voltage oscillator 20 respectively to produce oscillating pulses of the same time duration as the input square wave pulses. Thus, the output pulses of first and second voltage oscillators l8 and 20 comprise oscillating signals of for example 4 and 6 KHZ in the same pulse duration relationship during the predetermined time period T, as the square wave voltage pulses produced by second multi-vibrator 14. The magnitude of the output oscillating signals of first and second voltage oscillators 18 and 20 is controlled by the magnitude of the pulses applied by variable voltage divider 16.
Also connected to first and second voltage oscillators 18 and 20 is a monitoring amplifier 22. Connected to monitoring amplifier 22 is a speaker 24. Monitoring amplifier 22 and speaker 24 provide an audible means of monitoring the output of first and second voltage oscillators 18 and 20.
The output of first and second voltage oscillators 18 and 20 are connected to first and second power amplifiers 26 and 28 respectively. First and second power amplifiers 26 and 28 amplify the respective oscillating voltage signals applied from the first and second voltage oscillators I8 and 20. The output of first and second power amplifier 26 and 28 are connected to electrodes 30 of body probe 32. Body probe 32 is applied to the portion of the body of the patient to which the electrotherapeutic current is to be applied.
Connected to the output of third and fourth power amplifier 26 and 28 are Zener diodes 34 and 36. Zener diodes 34 and 36 are connected to ground and are voltage sensitive devices which switch from a very high impedance to a very low impedance after a predetermined voltage level has been exceeded. Thus, when the output of first and second power amplifiers 26 and 28 exceeds the predetermined switching voltage of Zener diodes 34 and 36, the Zener diodes 34 and 36 switch to a low impedance thus preventing the output of first and second voltage amplifiers 26 and 28 from exceeding switching voltage of Zener diodes 34 and 36. In this manner the application of a dangerous level of voltage to the body of the patient is prevented.
Thus, it may be seen that a new and improved electrotherapeutic device for applying therapeutic electric currents to the body of a patient has been provided. This device provides additional advantages over the prior art electrotherapeutic devices since it applies two separate high frequency currents to the body of the patient by time duration increasing pulses during a predetermined interval of time. These time duration increasing pulses are repeated after a predetermined off interval (designated T in the drawing), and the series of pulses is continued. Thus, the therapeutic effectiveness of the device is maintained without desensitizing the patients nervous system to the applied therapeutic electric currents.
It should be expressly understood that various changes, modifications may be made in the above described apparatus without departing from the spirit and scope of the present invention, the features of which are set forth in the accompanying claims.
We claim:
1. An electrotherapeutic device for applying therapeutic electrical currents to the body of a patient comprising:
first multi-vibrator means for producing a multiplicity of constant voltage signals of a predetermined time period, each of said multiplicity of voltage signals being separated by a predetermined time interval;
integrator means for receiving and converting each of said multiplicity of constant voltage signals into a corresponding ramp pulse having an increasing voltage magnitude during the predetermined period;
second multi-vibrator means for receiving and converting each of said ramp pulses into a multiplicity of separate square wave voltage pulses, the time duration of each of said square wave voltage pulses increasing proportionately during said predetermined period;
control means for controlling the magnitude of said square wave voltage pulses;
first oscillator means for receiving said square wave voltage pulses and converting said square wave voltage pulses into first oscillating voltage pulses having a first frequency, said first oscillating voltage pulses having the same proportionally increasing time duration as said square wave voltage pulses;
second oscillator means for receiving said square wave voltage pulses and converting said square voltage pulses into second oscillating voltage pulses having a second frequency, said second oscillating voltage pulses having the same proportionally increasing time duration as said square wave voltage pulses,
first amplifier means for receiving and amplifying said first oscillating voltage pulses,
second amplifier means for receiving amd amplifying said second oscillating voltage pulses;
probe means for receiving said amplified first and said second oscillating voltage pulses from the first and second amplifying means respectively and applying said first and second amplified oscillating voltage pulses to the body of the patient.
2. An electrotherapeutic device as claimed in claim 1 further comprising voltage sensitive means connected to said first and second amplifier means for preventing the magnitude of the amplified first and second oscillating voltage pulses from exceeding a predetermined maximum voltage.
3. An electrotherapeutic device as claimed in claim 1 further comprising visual indicating means to visually indicate the magnitude of the oscillating voltage pulses applied to the probe means.
4. An electrotherapeutic device as claimed in claim 1 further comprising audio monitor means connected to said first and second oscillator means, said audio means for reproducing audible perceptible pulses of a frequency corresponding to the frequency of said first and second oscillating voltage pulses.
5. An electrotherapeutic device as claimed in claim 1 wherein said probe means comprises:
a first pair of body contacts connected to said first amplifier means for receiving said first oscillating voltage pulses and applying said first oscillating voltage pulses to the body of the patient;
a second pair of body contacts connected to said second amplifier means for receiving said second oscillating voltage pulses and applying said second oscillating voltage pulses to the body of the patient.
6. An electrotherapeutic device as claimed in claim 2 wherein said voltage sensitive means comprises a first Zener diode connected from said first amplifier means to a ground; and a second Zener diode connected from said second amplifier means to a ground.

Claims (6)

1. An electrotherapeutic device for applying therapeutic electrical currents to the body of a patient comprising: first multi-vibrator means for producing a multiplicity of constant voltage signals of a predetermined time period, each of said multiplicity of voltage signals being separated by a predetermined time interval; integrator means for receiving and converting each of said multiplicity of constant voltage signals into a corresponding ramp pulse having an increasing voltage magnitude during the predetermined period; second multi-vibrator means for receiving and converting each of said ramp pulses into a multIplicity of separate square wave voltage pulses, the time duration of each of said square wave voltage pulses increasing proportionately during said predetermined period; control means for controlling the magnitude of said square wave voltage pulses; first oscillator means for receiving said square wave voltage pulses and converting said square wave voltage pulses into first oscillating voltage pulses having a first frequency, said first oscillating voltage pulses having the same proportionally increasing time duration as said square wave voltage pulses; second oscillator means for receiving said square wave voltage pulses and converting said square voltage pulses into second oscillating voltage pulses having a second frequency, said second oscillating voltage pulses having the same proportionally increasing time duration as said square wave voltage pulses, first amplifier means for receiving and amplifying said first oscillating voltage pulses, second amplifier means for receiving amd amplifying said second oscillating voltage pulses; probe means for receiving said amplified first and said second oscillating voltage pulses from the first and second amplifying means respectively and applying said first and second amplified oscillating voltage pulses to the body of the patient.
2. An electrotherapeutic device as claimed in claim 1 further comprising voltage sensitive means connected to said first and second amplifier means for preventing the magnitude of the amplified first and second oscillating voltage pulses from exceeding a predetermined maximum voltage.
3. An electrotherapeutic device as claimed in claim 1 further comprising visual indicating means to visually indicate the magnitude of the oscillating voltage pulses applied to the probe means.
4. An electrotherapeutic device as claimed in claim 1 further comprising audio monitor means connected to said first and second oscillator means, said audio means for reproducing audible perceptible pulses of a frequency corresponding to the frequency of said first and second oscillating voltage pulses.
5. An electrotherapeutic device as claimed in claim 1 wherein said probe means comprises: a first pair of body contacts connected to said first amplifier means for receiving said first oscillating voltage pulses and applying said first oscillating voltage pulses to the body of the patient; a second pair of body contacts connected to said second amplifier means for receiving said second oscillating voltage pulses and applying said second oscillating voltage pulses to the body of the patient.
6. An electrotherapeutic device as claimed in claim 2 wherein said voltage sensitive means comprises a first Zener diode connected from said first amplifier means to a ground; and a second Zener diode connected from said second amplifier means to a ground.
US00267956A 1972-06-30 1972-06-30 Dual oscillator, variable pulse duration electrotherapeutic device Expired - Lifetime US3794022A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US26795672A 1972-06-30 1972-06-30

Publications (1)

Publication Number Publication Date
US3794022A true US3794022A (en) 1974-02-26

Family

ID=23020823

Family Applications (1)

Application Number Title Priority Date Filing Date
US00267956A Expired - Lifetime US3794022A (en) 1972-06-30 1972-06-30 Dual oscillator, variable pulse duration electrotherapeutic device

Country Status (1)

Country Link
US (1) US3794022A (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929137A (en) * 1973-11-12 1975-12-30 Dentsply Res & Dev Sonic warning for electrosurgical device
US3973466A (en) * 1973-08-03 1976-08-10 The United States Of America As Represented By The Secretary Of The Navy Method for chemiluminescently detecting infiltration of protected perimeters and the like
DE2632700A1 (en) * 1976-07-21 1978-01-26 Gustav Doelker Therapeutic interference signal appts. - has automatic adjustment to maintain selected frequency in response to signal evaluation circuit
US4071033A (en) * 1976-12-20 1978-01-31 Nawracaj Edward P Electrotherapeutic device with modulated dual signals
FR2369850A1 (en) * 1976-11-03 1978-06-02 Fragnet Jean Medical appts. for ionising body tissues - uses electrical generator to provide square pulses to create potential difference in body cells
US4121594A (en) * 1977-09-26 1978-10-24 Med General, Inc. Transcutaneous electrical nerve stimulator
US4124028A (en) * 1977-04-04 1978-11-07 Ideal Instruments, Inc. Electroejaculation device
US4124030A (en) * 1977-01-05 1978-11-07 Roberts Wallace A Electro-therapeutic faradic current generator
US4153059A (en) * 1977-10-25 1979-05-08 Minnesota Mining And Manufacturing Company Urinary incontinence stimulator system
US4177799A (en) * 1977-07-25 1979-12-11 Masreliez Carl J Dental pulp tester
US4197641A (en) * 1977-03-30 1980-04-15 Siemens Aktiengesellschaft Electrical pulp testing instrument
US4233965A (en) * 1978-01-16 1980-11-18 Cas Products, Inc. Method and apparatus for the therapeutic treatment of living tissue
US4233986A (en) * 1978-07-18 1980-11-18 Agar Ginosar Electronics And Metal Products Apparatus and method for controlling pain by transcutaneous electrical stimulation (TES)
US4280504A (en) * 1979-01-16 1981-07-28 Firma Somartec S.A. Device for treatment with interference currents
US4392496A (en) * 1981-03-13 1983-07-12 Medtronic, Inc. Neuromuscular stimulator
US4401121A (en) * 1979-01-16 1983-08-30 Firma Somartec S.A. Device for treatment with interference currents
US4535777A (en) * 1981-08-20 1985-08-20 Physio Technology, Inc. Method of providing electrical stimulation of tissue
EP0154976A1 (en) * 1984-03-12 1985-09-18 BIO-RESEARCH ASSOCIATES, Inc. Electrical muscle stimulator
USRE32091E (en) * 1981-03-13 1986-03-11 Medtronic, Inc. Neuromuscular stimulator
US4887603A (en) * 1985-07-22 1989-12-19 Empi, Inc. Medical stimulator with stimulation signal characteristics modulated as a function of stimulation signal frequency
US4913148A (en) * 1985-07-31 1990-04-03 Hepax Limited Method for the treatment of herpes simplex and herpes zoster
US4922908A (en) * 1985-07-22 1990-05-08 Empi, Inc. Medical stimulator with stimulation signal characteristics modulated as a function of stimulation signal frequency
US5324317A (en) * 1992-09-30 1994-06-28 Medserve Group, Inc. Interferential stimulator for applying low frequency alternating current to the body
WO1998053876A1 (en) 1997-05-29 1998-12-03 Orton Kevin R Electrically activated substance and method for making the same
WO2000061221A1 (en) 1999-04-09 2000-10-19 Orton Kevin R Method of providing cosmetic/medical therapy
US6584358B2 (en) 2000-01-07 2003-06-24 Biowave Corporation Electro therapy method and apparatus
US20030163163A1 (en) * 1997-05-29 2003-08-28 Kevin Orton Method of providing cosmetic/medical therapy
US20030208248A1 (en) * 2000-01-07 2003-11-06 John Carter Percutaneous electrode array
US20030216792A1 (en) * 2002-04-08 2003-11-20 Levin Howard R. Renal nerve stimulation method and apparatus for treatment of patients
US20040167589A1 (en) * 2003-02-22 2004-08-26 Chester Heath Viral-inhibiting apparatus and methods
US20060025821A1 (en) * 2002-04-08 2006-02-02 Mark Gelfand Methods and devices for renal nerve blocking
US20060206150A1 (en) * 2002-04-08 2006-09-14 Ardian, Inc. Methods and apparatus for treating acute myocardial infarction
US20060235474A1 (en) * 2002-04-08 2006-10-19 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US20070027397A1 (en) * 2004-01-28 2007-02-01 Fischell David R System for patient alerting associated with a cardiac event
US20070066957A1 (en) * 2004-11-02 2007-03-22 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20070083239A1 (en) * 2005-09-23 2007-04-12 Denise Demarais Methods and apparatus for inducing, monitoring and controlling renal neuromodulation
US20070203549A1 (en) * 2005-12-29 2007-08-30 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
WO2007115362A1 (en) * 2006-04-07 2007-10-18 Global Energy Medicine Pty Ltd In vivo stimulation of cellular material
US20080033492A1 (en) * 2000-01-07 2008-02-07 Biowave Corporation Electro-therapy method
US20080213331A1 (en) * 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US20090093856A1 (en) * 2007-10-05 2009-04-09 Mady Attila High fidelity electronic tactile sensor and stimulator array, including sexual stimulus
US20090221939A1 (en) * 2002-04-08 2009-09-03 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US20110143648A1 (en) * 2005-01-06 2011-06-16 Oy Halton Group Ltd. Automatic displacement ventilation system with heating mode
US20110207758A1 (en) * 2003-04-08 2011-08-25 Medtronic Vascular, Inc. Methods for Therapeutic Renal Denervation
US20110208096A1 (en) * 2002-04-08 2011-08-25 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8620423B2 (en) 2002-04-08 2013-12-31 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermal modulation of nerves contributing to renal function
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US8818514B2 (en) 2002-04-08 2014-08-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for intravascularly-induced neuromodulation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9327122B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9439726B2 (en) 2002-04-08 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10080864B2 (en) 2012-10-19 2018-09-25 Medtronic Ardian Luxembourg S.A.R.L. Packaging for catheter treatment devices and associated devices, systems, and methods
US10179020B2 (en) 2010-10-25 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10537385B2 (en) 2008-12-31 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility
US10874455B2 (en) 2012-03-08 2020-12-29 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US11338140B2 (en) 2012-03-08 2022-05-24 Medtronic Ardian Luxembourg S.A.R.L. Monitoring of neuromodulation using biomarkers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622601A (en) * 1947-12-08 1952-12-23 Nemec Hans Electric nerve stimulator
US2700975A (en) * 1950-12-08 1955-02-01 Hopfinger Otto High-frequency apparatus for painless epilation
US3204637A (en) * 1963-02-07 1965-09-07 Erich J Frank Stimulating apparatus
US3431912A (en) * 1966-05-06 1969-03-11 Cordis Corp Standby cardiac pacer
US3489152A (en) * 1967-04-18 1970-01-13 Louis J Barbara Electrotherapeutic apparatus with body impedance-sensitive intensity regulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622601A (en) * 1947-12-08 1952-12-23 Nemec Hans Electric nerve stimulator
US2700975A (en) * 1950-12-08 1955-02-01 Hopfinger Otto High-frequency apparatus for painless epilation
US3204637A (en) * 1963-02-07 1965-09-07 Erich J Frank Stimulating apparatus
US3431912A (en) * 1966-05-06 1969-03-11 Cordis Corp Standby cardiac pacer
US3489152A (en) * 1967-04-18 1970-01-13 Louis J Barbara Electrotherapeutic apparatus with body impedance-sensitive intensity regulation

Cited By (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973466A (en) * 1973-08-03 1976-08-10 The United States Of America As Represented By The Secretary Of The Navy Method for chemiluminescently detecting infiltration of protected perimeters and the like
US3929137A (en) * 1973-11-12 1975-12-30 Dentsply Res & Dev Sonic warning for electrosurgical device
DE2632700A1 (en) * 1976-07-21 1978-01-26 Gustav Doelker Therapeutic interference signal appts. - has automatic adjustment to maintain selected frequency in response to signal evaluation circuit
FR2369850A1 (en) * 1976-11-03 1978-06-02 Fragnet Jean Medical appts. for ionising body tissues - uses electrical generator to provide square pulses to create potential difference in body cells
US4071033A (en) * 1976-12-20 1978-01-31 Nawracaj Edward P Electrotherapeutic device with modulated dual signals
US4124030A (en) * 1977-01-05 1978-11-07 Roberts Wallace A Electro-therapeutic faradic current generator
US4197641A (en) * 1977-03-30 1980-04-15 Siemens Aktiengesellschaft Electrical pulp testing instrument
US4124028A (en) * 1977-04-04 1978-11-07 Ideal Instruments, Inc. Electroejaculation device
US4177799A (en) * 1977-07-25 1979-12-11 Masreliez Carl J Dental pulp tester
US4121594A (en) * 1977-09-26 1978-10-24 Med General, Inc. Transcutaneous electrical nerve stimulator
US4153059A (en) * 1977-10-25 1979-05-08 Minnesota Mining And Manufacturing Company Urinary incontinence stimulator system
US4233965A (en) * 1978-01-16 1980-11-18 Cas Products, Inc. Method and apparatus for the therapeutic treatment of living tissue
US4233986A (en) * 1978-07-18 1980-11-18 Agar Ginosar Electronics And Metal Products Apparatus and method for controlling pain by transcutaneous electrical stimulation (TES)
US4401121A (en) * 1979-01-16 1983-08-30 Firma Somartec S.A. Device for treatment with interference currents
US4280504A (en) * 1979-01-16 1981-07-28 Firma Somartec S.A. Device for treatment with interference currents
USRE32091E (en) * 1981-03-13 1986-03-11 Medtronic, Inc. Neuromuscular stimulator
US4392496A (en) * 1981-03-13 1983-07-12 Medtronic, Inc. Neuromuscular stimulator
US4535777A (en) * 1981-08-20 1985-08-20 Physio Technology, Inc. Method of providing electrical stimulation of tissue
EP0154976A1 (en) * 1984-03-12 1985-09-18 BIO-RESEARCH ASSOCIATES, Inc. Electrical muscle stimulator
US4887603A (en) * 1985-07-22 1989-12-19 Empi, Inc. Medical stimulator with stimulation signal characteristics modulated as a function of stimulation signal frequency
US4922908A (en) * 1985-07-22 1990-05-08 Empi, Inc. Medical stimulator with stimulation signal characteristics modulated as a function of stimulation signal frequency
US4913148A (en) * 1985-07-31 1990-04-03 Hepax Limited Method for the treatment of herpes simplex and herpes zoster
US5324317A (en) * 1992-09-30 1994-06-28 Medserve Group, Inc. Interferential stimulator for applying low frequency alternating current to the body
US6488032B1 (en) 1997-05-29 2002-12-03 Kevin R. Orton Method of providing cosmetic/medical therapy
US6181962B1 (en) 1997-05-29 2001-01-30 Kevin R. Orton Electrically activated substance and method for making the same
WO1998053876A1 (en) 1997-05-29 1998-12-03 Orton Kevin R Electrically activated substance and method for making the same
US20050217682A1 (en) * 1997-05-29 2005-10-06 Orton Kevin R Method of providing cosmetic/medical therapy
US20030163163A1 (en) * 1997-05-29 2003-08-28 Kevin Orton Method of providing cosmetic/medical therapy
US6920884B2 (en) 1997-05-29 2005-07-26 Kevin Orton Method of providing cosmetic/medical therapy
WO2000061221A1 (en) 1999-04-09 2000-10-19 Orton Kevin R Method of providing cosmetic/medical therapy
US7013179B2 (en) 2000-01-07 2006-03-14 Biowave Corporation Percutaneous electrode array
US6760627B2 (en) 2000-01-07 2004-07-06 Biowave Corporation Electro therapy method and apparatus
US20080033492A1 (en) * 2000-01-07 2008-02-07 Biowave Corporation Electro-therapy method
US6792315B2 (en) 2000-01-07 2004-09-14 Biowave Corporation Electro therapy method and apparatus
US6853863B2 (en) 2000-01-07 2005-02-08 Biowave Corporation Electro therapy method and apparatus
US20050043775A1 (en) * 2000-01-07 2005-02-24 Carter John Percutaneous electrode array
US20030208248A1 (en) * 2000-01-07 2003-11-06 John Carter Percutaneous electrode array
US6584358B2 (en) 2000-01-07 2003-06-24 Biowave Corporation Electro therapy method and apparatus
US7130696B2 (en) 2000-01-07 2006-10-31 Biowave Corporation Percutaneous electrode array
US8721637B2 (en) 2002-04-08 2014-05-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US9023037B2 (en) 2002-04-08 2015-05-05 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US20060025821A1 (en) * 2002-04-08 2006-02-02 Mark Gelfand Methods and devices for renal nerve blocking
US20050228460A1 (en) * 2002-04-08 2005-10-13 Levin Howard R Renal nerve stimulation method and apparatus for treatment of patients
US20060206150A1 (en) * 2002-04-08 2006-09-14 Ardian, Inc. Methods and apparatus for treating acute myocardial infarction
US20060212076A1 (en) * 2002-04-08 2006-09-21 Ardian, Inc. Methods and apparatus for treating end-stage renal disease
US20060235474A1 (en) * 2002-04-08 2006-10-19 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US20050228459A1 (en) * 2002-04-08 2005-10-13 Levin Howard R Renal nerve stimulation method and apparatus for treatment of patients
US20060271111A1 (en) * 2002-04-08 2006-11-30 Ardian, Inc. Methods and apparatus for treating contrast nephropathy
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US11033328B2 (en) 2002-04-08 2021-06-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US10850091B2 (en) 2002-04-08 2020-12-01 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US10441356B2 (en) 2002-04-08 2019-10-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation via neuromodulatory agents
US10420606B2 (en) 2002-04-08 2019-09-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US20070173899A1 (en) * 2002-04-08 2007-07-26 Ardian, Inc. Renal nerve stimulation method for treatment of patients
US10376312B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for monopolar renal neuromodulation
US10376311B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US10376516B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US20080213331A1 (en) * 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US10293190B2 (en) 2002-04-08 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Thermally-induced renal neuromodulation and associated systems and methods
US20090221939A1 (en) * 2002-04-08 2009-09-03 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US10272246B2 (en) 2002-04-08 2019-04-30 Medtronic Adrian Luxembourg S.a.r.l Methods for extravascular renal neuromodulation
US7647115B2 (en) 2002-04-08 2010-01-12 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7717948B2 (en) 2002-04-08 2010-05-18 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20100191112A1 (en) * 2002-04-08 2010-07-29 Ardian, Inc. Ultrasound apparatuses for thermally-induced renal neuromodulation
US10245429B2 (en) 2002-04-08 2019-04-02 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US10179027B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable baskets for renal neuromodulation and associated systems and methods
US10179235B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US10179028B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating patients via renal neuromodulation
US10130792B2 (en) 2002-04-08 2018-11-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation using neuromodulatory agents or drugs
US20110208096A1 (en) * 2002-04-08 2011-08-25 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8131372B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Renal nerve stimulation method for treatment of patients
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8150518B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US8150520B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods for catheter-based renal denervation
US8175711B2 (en) 2002-04-08 2012-05-08 Ardian, Inc. Methods for treating a condition or disease associated with cardio-renal function
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US10124195B2 (en) 2002-04-08 2018-11-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US8444640B2 (en) 2002-04-08 2013-05-21 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8454594B2 (en) 2002-04-08 2013-06-04 Medtronic Ardian Luxembourg S.A.R.L. Apparatus for performing a non-continuous circumferential treatment of a body lumen
US8548600B2 (en) 2002-04-08 2013-10-01 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses for renal neuromodulation and associated systems and methods
US8551069B2 (en) 2002-04-08 2013-10-08 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for treating contrast nephropathy
US8620423B2 (en) 2002-04-08 2013-12-31 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermal modulation of nerves contributing to renal function
US8626300B2 (en) 2002-04-08 2014-01-07 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US10111707B2 (en) 2002-04-08 2018-10-30 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of human patients
US8684998B2 (en) 2002-04-08 2014-04-01 Medtronic Ardian Luxembourg S.A.R.L. Methods for inhibiting renal nerve activity
US20030216792A1 (en) * 2002-04-08 2003-11-20 Levin Howard R. Renal nerve stimulation method and apparatus for treatment of patients
US8728137B2 (en) 2002-04-08 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US8728138B2 (en) 2002-04-08 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US8740896B2 (en) 2002-04-08 2014-06-03 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US8768470B2 (en) 2002-04-08 2014-07-01 Medtronic Ardian Luxembourg S.A.R.L. Methods for monitoring renal neuromodulation
US8771252B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US8784463B2 (en) 2002-04-08 2014-07-22 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US10105180B2 (en) 2002-04-08 2018-10-23 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US8818514B2 (en) 2002-04-08 2014-08-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for intravascularly-induced neuromodulation
US8845629B2 (en) 2002-04-08 2014-09-30 Medtronic Ardian Luxembourg S.A.R.L. Ultrasound apparatuses for thermally-induced renal neuromodulation
US8852163B2 (en) 2002-04-08 2014-10-07 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation via drugs and neuromodulatory agents and associated systems and methods
US8880186B2 (en) 2002-04-08 2014-11-04 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients with chronic heart failure
US8934978B2 (en) 2002-04-08 2015-01-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US8948865B2 (en) 2002-04-08 2015-02-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating heart arrhythmia
US8958871B2 (en) 2002-04-08 2015-02-17 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8983595B2 (en) 2002-04-08 2015-03-17 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients with chronic heart failure
US8986294B2 (en) 2002-04-08 2015-03-24 Medtronic Ardian Luxembourg S.a.rl. Apparatuses for thermally-induced renal neuromodulation
US20050234523A1 (en) * 2002-04-08 2005-10-20 Levin Howard R Renal nerve stimulation method and apparatus for treatment of patients
US9072527B2 (en) 2002-04-08 2015-07-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses and methods for renal neuromodulation
US10039596B2 (en) 2002-04-08 2018-08-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatus for renal neuromodulation via an intra-to-extravascular approach
US9125661B2 (en) 2002-04-08 2015-09-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9131978B2 (en) 2002-04-08 2015-09-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9138281B2 (en) 2002-04-08 2015-09-22 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation via catheter apparatuses having expandable baskets
US9186213B2 (en) 2002-04-08 2015-11-17 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9186198B2 (en) 2002-04-08 2015-11-17 Medtronic Ardian Luxembourg S.A.R.L. Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods
US9192715B2 (en) 2002-04-08 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal nerve blocking
US9265558B2 (en) 2002-04-08 2016-02-23 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9289255B2 (en) 2002-04-08 2016-03-22 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9314630B2 (en) 2002-04-08 2016-04-19 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9320561B2 (en) 2002-04-08 2016-04-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9326817B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating heart arrhythmia
US9327122B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9364280B2 (en) 2002-04-08 2016-06-14 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US10034708B2 (en) 2002-04-08 2018-07-31 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US9439726B2 (en) 2002-04-08 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9445867B1 (en) 2002-04-08 2016-09-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation via catheters having expandable treatment members
US9456869B2 (en) 2002-04-08 2016-10-04 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9463066B2 (en) 2002-04-08 2016-10-11 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9468497B2 (en) 2002-04-08 2016-10-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9474563B2 (en) 2002-04-08 2016-10-25 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9486270B2 (en) 2002-04-08 2016-11-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9675413B2 (en) 2002-04-08 2017-06-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9707035B2 (en) 2002-04-08 2017-07-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9731132B2 (en) 2002-04-08 2017-08-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9743983B2 (en) 2002-04-08 2017-08-29 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9757193B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US9757192B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9814873B2 (en) 2002-04-08 2017-11-14 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US9827041B2 (en) 2002-04-08 2017-11-28 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatuses for renal denervation
US9827040B2 (en) 2002-04-08 2017-11-28 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for intravascularly-induced neuromodulation
US9895195B2 (en) 2002-04-08 2018-02-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9907611B2 (en) 2002-04-08 2018-03-06 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9968611B2 (en) 2002-04-08 2018-05-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US9956410B2 (en) 2002-04-08 2018-05-01 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US20070073372A1 (en) * 2003-02-22 2007-03-29 Chester Heath Viral-inhibiting apparatus and methods
US20040167589A1 (en) * 2003-02-22 2004-08-26 Chester Heath Viral-inhibiting apparatus and methods
US20110207758A1 (en) * 2003-04-08 2011-08-25 Medtronic Vascular, Inc. Methods for Therapeutic Renal Denervation
US20070027397A1 (en) * 2004-01-28 2007-02-01 Fischell David R System for patient alerting associated with a cardiac event
US9108040B2 (en) 2004-10-05 2015-08-18 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US8805545B2 (en) 2004-10-05 2014-08-12 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US10537734B2 (en) 2004-10-05 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US8433423B2 (en) 2004-10-05 2013-04-30 Ardian, Inc. Methods for multi-vessel renal neuromodulation
US9402992B2 (en) 2004-10-05 2016-08-02 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US20110178570A1 (en) * 2004-10-05 2011-07-21 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US9950161B2 (en) 2004-10-05 2018-04-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US20070066957A1 (en) * 2004-11-02 2007-03-22 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20110143648A1 (en) * 2005-01-06 2011-06-16 Oy Halton Group Ltd. Automatic displacement ventilation system with heating mode
US20070083239A1 (en) * 2005-09-23 2007-04-12 Denise Demarais Methods and apparatus for inducing, monitoring and controlling renal neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US20070203549A1 (en) * 2005-12-29 2007-08-30 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US20100261947A1 (en) * 2006-04-07 2010-10-14 Global Energy Medicine Pty Ltd Vivo stimulation of cellular material
WO2007115362A1 (en) * 2006-04-07 2007-10-18 Global Energy Medicine Pty Ltd In vivo stimulation of cellular material
US8672826B2 (en) 2006-04-07 2014-03-18 Global Energy Medicine Pty. Ltd. Vivo stimulation of cellular material
US20090093856A1 (en) * 2007-10-05 2009-04-09 Mady Attila High fidelity electronic tactile sensor and stimulator array, including sexual stimulus
US10537385B2 (en) 2008-12-31 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility
US10561460B2 (en) 2008-12-31 2020-02-18 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation systems and methods for treatment of sexual dysfunction
US10179020B2 (en) 2010-10-25 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US10874455B2 (en) 2012-03-08 2020-12-29 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US11338140B2 (en) 2012-03-08 2022-05-24 Medtronic Ardian Luxembourg S.A.R.L. Monitoring of neuromodulation using biomarkers
US10080864B2 (en) 2012-10-19 2018-09-25 Medtronic Ardian Luxembourg S.A.R.L. Packaging for catheter treatment devices and associated devices, systems, and methods
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation

Similar Documents

Publication Publication Date Title
US3794022A (en) Dual oscillator, variable pulse duration electrotherapeutic device
US4071033A (en) Electrotherapeutic device with modulated dual signals
US4227516A (en) Apparatus for electrophysiological stimulation
US2622601A (en) Electric nerve stimulator
ATE40526T1 (en) DEVICE FOR THERAPEUTIC TREATMENT OF LIVING TISSUE BY STIMULATION WITH ELECTRIC CURRENT PULSE AND/OR ELECTROMAGNETIC WAVES.
US5391195A (en) Device for carrying out an iontophoresis treatment on a patient
KR880002546A (en) Low frequency treatment device
JPH05502608A (en) Method and device for epilepsy treatment
SU1457935A1 (en) Apparatus for electroanalgesia
ATE116140T1 (en) ELECTRICAL STIMULATION DEVICE.
Graupe et al. Stochastically-modulated stimulation to slow down muscle fatigue at stimulated sites in paraplegics using functional electrical stimulation for leg extension
US3518996A (en) Muscle stimulator
ES8800847A1 (en) Low-frequency therapeutic device.
JP2002515312A (en) Magnetic stimulator
RU2159639C1 (en) Method and device for performing transcranial electrostimulation of cerebral endorphin mechanisms
JPS61500594A (en) Non-invasive treatment method and circuit for implementing this method
RU2090215C1 (en) Device for acting with electric current
SU1482718A1 (en) Method and apparatus for regulating emotional strees
RU1806723C (en) Electric puncture device
SU1692590A1 (en) Device for magnetotherapy
RU2062126C1 (en) Electric stimulator
WO1999001178A1 (en) A method and device for magnetotherapeutic improvement of the immune system
Wilmanns Pseudorandom stimulation
SU1711914A1 (en) Electric tranquilization device
DE2314014A1 (en) ARRANGEMENT FOR THE GENERATION OF WIRELESS SLEEP AND WAKE PULSES AND METHOD FOR THEIR APPLICATION