... ym3D & pl. const h1ym=4D !wym1D ! pl. + suffix lha settle down ? tent lh4a f+ I. wFlh0a1 sg. + suffix μyl5h1a f pl.abs. yl3h0a1 pl.const. ˇyl=4h1a f pl. + suffix vmj √ dubious I. vm3j 1 five (with f. nouns) vm3j 8 const. hV1m5j 8(with ...
... yM = 3 d and zM = h in Equation (2.56) one can calculate d 2 k k k d MOx = mg + F N h − FM 3 l MOy = −mg 2 − FLh + FMl MOz = FLd. The Ox, Oy and Oz coordinates of points A, B, C, D, E, N are introduced in MATLAB using: items_sxy ...
... Y M 3 D 06/24/93 PV 6,621 。 A 07/01/93 3 I Y 3 3 D 05/07/93 P 05/07/93 60,000 891,250 VP 06/23/93 P 06/23/93 D 06/29/93 06/29/93 S D 05/11/93 J D 06/15/93 J I 06/15/93 11,777 209 28,572 32,418 OD 04/26/93 MV A 04 / 26 / 93Q IA OD 02/10/93 ...
... Ym3D ym A combination of equations ( 13 ) , ( 18 ) and ( 19 ) will yield the value of sym in the three - dimensional case . The location of this value is still given by equation ( 14 ) . The distribution of s / sym should be calculated ...
... Ym ) . 3 d - dimension of lattice after applying NC , B ' ← submatrix consisting of the first d rows and columns of B. 4 Implement the LLL algorithm on B ' . 5 Convert the first m rows of B ' to polynomials f1 , ... , fm , and solve ...
... Ym ) ... 3 D ( w1 ) D ( W2 , ... , Wm ) = D ( z1 ) D ( Z2 , Zm ) D ( w1 , W2 , ... , Wm ) 2 = 2 hence , formula ( 1 ) is valid for any n . D ( Z1 , Z2 , ... , Zm ) II Every bounded operator A in L2 ( W ) 423 APPENDIX.